Patents by Inventor Peter C. Simpson

Peter C. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180289294
    Abstract: Systems and methods of use involving sensors having a particle-containing domain are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 11, 2018
    Inventors: Peter C. Simpson, Robert J. Boock, Matthew Wightlin, Mark C. Shults
  • Publication number: 20180279928
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: May 31, 2018
    Publication date: October 4, 2018
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20180271415
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: May 30, 2018
    Publication date: September 27, 2018
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20180256084
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 13, 2018
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Publication number: 20180242894
    Abstract: Biointerface membranes are provided which can be utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device incorporating such membranes are provided.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 30, 2018
    Inventors: James H. Brauker, Robert J. Boock, Monica A. Rixman, Peter C. Simpson, Mark C. Brister, Mark C. Shults
  • Patent number: 10052073
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: August 21, 2018
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Patent number: 10052050
    Abstract: Systems and methods for analyte monitoring, particularly systems and methods for monitoring and managing life of a battery in an analyte sensor system worn by a user, are provided.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 21, 2018
    Assignee: DexCom, Inc.
    Inventors: Jose Hector Hernandez-Rosas, Mark Dervaes, Peter C. Simpson, Apurv Ullas Kamath, Tom Miller, Shawn Larvenz, Stephen J. Vanslyke
  • Publication number: 20180211551
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Application
    Filed: March 20, 2018
    Publication date: July 26, 2018
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Koehler, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Patent number: 10028684
    Abstract: Systems and methods of use involving sensors having a particle-containing domain are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: July 24, 2018
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Matthew Wightlin, Mark C. Shults
  • Patent number: 10028683
    Abstract: Systems and methods of use involving sensors having a particle-containing domain are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: July 24, 2018
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Matthew D. Wightlin, Mark C. Shults
  • Publication number: 20180199873
    Abstract: Flexible analyte sensors are provided. Flexible analyte sensors may be flexible continuous analyte sensors that facilitate continuous monitoring of an analyte such as blood glucose. The flexible analyte sensor may have a relatively flexible conductive or non-conductive core, may be formed from a plurality of substantially planar layers, or may be configured to transform from a freestanding sensor ex vivo to a non-freestanding sensor in vivo.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 19, 2018
    Inventors: Shanger Wang, Devon M. Headen, Sebastian Bohm, Jonathan Hughes, Ted Tang Lee, Peter C. Simpson, Jiong Zou
  • Patent number: 10022078
    Abstract: The present invention relates generally to biointerface membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the invention relates to novel biointerface membranes, to devices and implantable devices including these membranes, methods for forming the biointerface membranes on or around the implantable devices, and to methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 17, 2018
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Peter C. Simpson, Robert Boock, Monica Rixman, Mark Brister
  • Publication number: 20180185587
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20180182491
    Abstract: Systems and methods disclosed provide ways for Health Care Professionals (HCPs) to be involved in initial patient system set up so that the data received is truly transformative, such that the patient not just understands what all the various numbers mean but also how the data can be used. For example, in one implementation, a CGM device is configured for use by a HCP, and includes a housing and a circuit configured to receive a signal from a transmitter coupled to an indwelling glucose sensor. A calibration module converts the received signal into clinical units. A user interface is provided that is configured to display a measured glucose concentration in the clinical units. The user interface is further configured to receive input data about a patient level, where the input data about the patient level causes the device to operate in a mode appropriate to the patient level.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 28, 2018
    Inventors: Scott M. Belliveau, Naresh C. Bhavaraju, Darin Edward Chum Dew, Eric Cohen, Anna Leigh Davis, Mark Dervaes, Laura J. Dunn, Minda McDorman Grucela, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Steven David King, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Zebediah L. McDaniel, Sumitaka Mikami, Subrai Girish Pai, Philip Mansiel Pellouchoud, Stephen Alan Reichert, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Stephen J. Vanslyke, Robert Patrick Van Tassel, Matthew D. Wightlin, Richard C. Yang, James Stephen Amidei, David Derenzy, Benjamin Elrod West, Vincent Crabtree, Michael Levozier Moore, Douglas William Burnette, Alexandra Elena Constantin, Nicholas Polytaridis, Dana Charles Cambra, Abhishek Sharma, Kho Braun, Patrick Wile McBride
  • Patent number: 10004442
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: June 26, 2018
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 9993186
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: June 12, 2018
    Assignee: DexCom, Inc.
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Patent number: 9996668
    Abstract: Methods and apparatus, including computer program products, are provided for backfilling. In some example embodiments, there is provided a method that includes receiving, at a receiver, backfill data representative of sensor data stored, at a continuous blood glucose sensor and transmitter assembly, due to a loss of a wireless link between the receiver and the continuous blood glucose sensor and transmitter assembly; generating, at the receiver, at least one of a notification or a graphically distinct indicator for presentation at a display of the receiver, the at least one of the notification or the graphically distinct indicator enabling the backfill data to be graphically distinguished, when presented at the display, from non-backfill data; and generating, at the receiver, a view including the backfill data, the non-backfill data, and the generated at least one of the notification or the graphically distinct indicator. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: June 12, 2018
    Assignee: DexCom, Inc.
    Inventors: Eli Reihman, Sebastian Bohm, Leif N. Bowman, Katherine Yerre Koehler, Disha B. Sheth, Peter C. Simpson, Jim Stephen Amidei, Douglas William Burnette, Michael Robert Mensinger, Eric Cohen, Hari Hampapuram, Phil Mayou
  • Patent number: 9986942
    Abstract: Biointerface membranes are provided which can be utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device incorporating such membranes are provided.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: June 5, 2018
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Robert Boock, Monica Rixman, Peter C. Simpson, Mark Brister, Mark Shults
  • Publication number: 20180146896
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Application
    Filed: January 23, 2018
    Publication date: May 31, 2018
    Inventors: Peter C. Simpson, Robert J. Boock, Apurv Ullas Kamath, Matthew D. Wightlin, Michael J. Estes
  • Patent number: 9974903
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 22, 2018
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Scott M. Belliveau, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Naresh C. Bhavaraju, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable