Patents by Inventor Peter C. Simpson

Peter C. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180008174
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: September 22, 2017
    Publication date: January 11, 2018
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20180008173
    Abstract: Systems and methods of use involving sensors having a particle-containing domain are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 11, 2018
    Inventors: Peter C. Simpson, Robert J. Boock, Matthew Wightlin, Mark C. Shults
  • Publication number: 20180000388
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: August 22, 2017
    Publication date: January 4, 2018
    Inventors: Peter C. Simpson, Robert J. Boock, Paul V. Neale, Sebastian Böhm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Patent number: 9848809
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 26, 2017
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20170360341
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure additional analyte or non-analyte related signal. Such measurements may provide a background and/or sensitivity measurement(s) for use in processing sensor data and may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Inventors: Mark C. Brister, James R. Petisce, Peter C. Simpson
  • Patent number: 9844328
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: December 19, 2017
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Böhm
  • Patent number: 9847038
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: December 19, 2017
    Assignee: DexCom, Inc.
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Grubstein, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Publication number: 20170347971
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: August 23, 2017
    Publication date: December 7, 2017
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Patent number: 9833143
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: December 5, 2017
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, Peter C. Simpson, James H. Brauker, James Patrick Thrower, Mark Shults, Rathbun K. Rhodes, Paul V. Goode, Jr., Arnold L. Holmquist
  • Patent number: 9833199
    Abstract: This disclosure provides systems, methods and apparatus for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor. The system may include a display device with at least one input device. In response to movement of or along the input device, the display device may change a glucose data output parameter and update an output of the display device using the changed output parameter.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: December 5, 2017
    Assignee: DexCom, Inc.
    Inventors: Eric Johnson, Michael Robert Mensinger, Peter C. Simpson, Thomas Hall, Hari Hampapuram, Kostyantyn Snisarenko, Eli Reihman, Holly Chico, Kassandra Constantine
  • Publication number: 20170340253
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: August 17, 2017
    Publication date: November 30, 2017
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, JR.
  • Publication number: 20170319111
    Abstract: In one embodiment, a continuous analyte sensor having more than one working electrode, and configured to reduce or eliminate crosstalk between the working electrodes. In another embodiment, a continuous analyte sensor having more than one working electrode, and configured so that a membrane system has equal thicknesses over each of the electrodes, despite having differing numbers of layers over each of the electrodes. In another embodiment, a configuration for connecting a continuous analyte sensor to sensor electronics. In another embodiment, methods for forming precise windows in an insulator material on a multi-electrode assembly. In another embodiment, a contact assembly for a continuous analyte sensor having more than one working electrode.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Peter C. Simpson, Sebastian Bohm, Robert J. Boock, Matthew D. Wightlin, Huashi Zhang
  • Patent number: 9808190
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: November 7, 2017
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20170311903
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 2, 2017
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20170311904
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 2, 2017
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Patent number: 9801575
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 31, 2017
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Patent number: 9788766
    Abstract: Disclosed herein is an analyte sensing biointerface that comprises a sensing electrode incorporated within a non-conductive matrix comprising a plurality of passageways extending through the matrix to the sensing electrode. Also disclosed herein are methods of manufacturing a sensing biointerface and methods of detecting an analyte within tissue of a host using an analyte sensing biointerface.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: October 17, 2017
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker
  • Patent number: 9788354
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 10, 2017
    Assignee: DexCom, Inc.
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Publication number: 20170281060
    Abstract: Methods and apparatus are provided for communication among display devices and sensor electronics unit in an analyte monitoring system. The analyte monitoring system may include a sensor that is configured to perform measurements indicative of analyte levels. The sensor may be communicatively coupled to the sensor electronics unit. The sensor electronics unit may be configured to transmit data indicative of analyte levels to the display devices using one or more communication protocols. Furthermore, the sensor electronics unit may be configured to operate in multiple modes, and switch between the modes in response to commands received from the display devices. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 5, 2017
    Inventors: Jeffrey R. Wedekind, Douglas William Burnette, Aditya Mandapaka, Zebediah L. McDaniel, Peter C. Simpson, Arturo Garcia
  • Publication number: 20170281000
    Abstract: Methods and apparatus are provided for communication among display devices and sensor electronics unit in an analyte monitoring system. The analyte monitoring system may include a sensor that is configured to perform measurements indicative of analyte levels. The sensor may be communicatively coupled to the sensor electronics unit. The sensor electronics unit may be configured to transmit data indicative of analyte levels to the display devices using one or more communication protocols. Furthermore, the sensor electronics unit may be configured to operate in multiple modes, and switch between the modes in response to commands received from the display devices. Related systems, methods, and articles of manufacture are also described.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 5, 2017
    Inventors: Jeffrey R. Wedekind, Douglas William Burnette, Aditya Mandapaka, Zebediah L. McDaniel, Peter C. Simpson, Arturo Garcia