Patents by Inventor Peter C. Simpson

Peter C. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180132720
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 17, 2018
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Publication number: 20180126074
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: April 28, 2017
    Publication date: May 10, 2018
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20180116570
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20180116572
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Ebuen Morta, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Patent number: 9953542
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: April 24, 2018
    Assignee: DexCom, Inc.
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Koehler, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Patent number: 9940846
    Abstract: Systems and methods that continuously adapt aspects of a continuous monitoring device based on collected information to provide an individually tailored configuration are described. The adaptations may include adapting the user interface, the alerting, the motivational messages, the training, and the like. Such adaptation can allow a patient to more readily identify and understand the information provided by/via the device.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: April 10, 2018
    Assignee: DexCom, Inc.
    Inventors: Phil Mayou, Naresh C. Bhavaraju, Leif N. Bowman, Alexandra Lynn Carlton, Laura J. Dunn, Katherine Yerre Koehler, Aarthi Mahalingam, Eli Reihman, Peter C. Simpson
  • Patent number: 9937293
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: April 10, 2018
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 9931037
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: April 3, 2018
    Assignee: DexCom, Inc.
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Patent number: 9931036
    Abstract: Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises: activating a transceiver of a first communication device associated with an analyte sensor at a first time; and establishing a two-way communication channel with the second communication device; wherein the activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: April 3, 2018
    Assignee: DexCom, Inc.
    Inventors: Thomas Miller, Mark Dervaes, Phong Lieu, Peter C. Simpson, Shawn Larvenz, Jacob S. Leach, Sebastian Bohm
  • Patent number: 9931065
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with pushbutton activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing, all in one smooth motion. Some embodiments contemplate engagement of the transmitter with the housing after release of the applicator.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 3, 2018
    Assignee: DeXCom, Inc.
    Inventors: Jack Pryor, Sebastian Bohm, David DeRenzy, Jason Halac, Daniel S. Kline, Phong Lieu, Adam J. Livingston, Steve Masterson, Paul V. Neale, Peter C. Simpson, Antonio Joao Ubach
  • Publication number: 20180075200
    Abstract: Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Esteban Cabrera, JR., Alexandra Elena Constantin, Rian Draeger, Peter Galuardi, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aarthi Mahalingam, Gary A. Morris, Philip Thomas Pupa, Peter C. Simpson, Brian Christopher Smith, Tomas C. Walker
  • Publication number: 20180075201
    Abstract: Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Esteban Cabrera, JR., Alexandra Elena Constantin, Rian Draeger, Peter Galuardi, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aarthi Mahalingam, Gary A. Morris, Philip Thomas Pupa, Peter C. Simpson, Brian Christopher Smith, Tomas C. Walker
  • Publication number: 20180075202
    Abstract: Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Esteban Cabrera, JR., Alexandra Elena Constantin, Rian Draeger, Peter Galuardi, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aarthi Mahalingam, Gary A. Morris, Philip Thomas Pupa, Peter C. Simpson, Brian Christopher Smith, Tomas C. Walker
  • Patent number: 9907497
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: March 6, 2018
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Apurv Ullas Kamath, Matthew D. Wightlin, Michael J. Estes
  • Publication number: 20180055361
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: October 30, 2017
    Publication date: March 1, 2018
    Inventors: Mark C. Brister, Paul V. Neale, Peter C. Simpson, James H. Brauker, James Patrick Thrower, Mark Shults, Rathbun K. Rhodes, Paul V. Goode, JR., Arnold L. Holmquist
  • Publication number: 20180042529
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20180042559
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Application
    Filed: August 10, 2017
    Publication date: February 15, 2018
    Inventors: Esteban Cabrera, JR., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Publication number: 20180042558
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Application
    Filed: August 10, 2017
    Publication date: February 15, 2018
    Inventors: Esteban Cabrera, JR., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Publication number: 20180042530
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 15, 2018
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Publication number: 20180008176
    Abstract: Disclosed herein is an analyte sensing biointerface that comprises a sensing electrode incorporated within a non-conductive matrix comprising a plurality of passageways extending through the matrix to the sensing electrode. Also disclosed herein are methods of manufacturing a sensing biointerface and methods of detecting an analyte within tissue of a host using an analyte sensing biointerface.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 11, 2018
    Inventors: Peter C. Simpson, James H. Brauker