Patents by Inventor Peter Flohr

Peter Flohr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8794008
    Abstract: In a method for the low-CO emissions part load operation of a gas turbine with sequential combustion, the air ratio (?) of the operative burners (9) of the second combustor (15) is kept below a maximum air ratio (?max) at part load In order to reduce the maximum air ratio (?), a series of modifications in the operating concept of the gas turbine are carried out individually or in combination. One modification is an opening of the row of variable compressor inlet guide vanes (14) before engaging the second combustor (15). For engaging the second combustor, the row of variable compressor inlet guide vanes (14) is quickly closed and fuel is introduced in a synchronized manner into the burner (9) of the second combustor (15). A further modification is the deactivating of individual burners (9) at part load.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: August 5, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Adnan Eroglu, Klaus Knapp, Peter Flohr, Hans Peter Knoepfel, Weiqun Geng
  • Patent number: 8783008
    Abstract: A reheat combustor for a gas turbine engine includes a fuel/gas mixer for mixing fuel, air and combustion gases produced by a primary combustor and expanded through a high pressure turbine. Fuel injectors inject fuel into the mixer together with spent cooling air previously used for convectively cooling the reheat combustor. The fuel mixture is burnt in an annular reheat combustion chamber prior to expansion through low pressure turbine inlet guide vanes. The fuel/gas mixer and optionally the combustion chamber define cooling paths through which cooling air flows to convectively cool their walls. The fuel injectors are also convectively cooled by the cooling air after it has passed through the fuel/gas mixer cooling paths. The low pressure turbine inlet guide vanes may also define convective cooling paths in series with the combustion chamber cooling paths.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: July 22, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Adnan Eroglu, Thiemo Meeuwissen, Peter Flohr
  • Patent number: 8434312
    Abstract: In a method for the low-CO emissions part load operation of a gas turbine with sequential combustion, the air ratio (?) of the operative burners (9) of the second combustor (15) is kept below a maximum air ratio (?max) at part load In order to reduce the maximum air ratio (?), a series of modifications in the operating concept of the gas turbine are carried out individually or in combination. One modification is an opening of the row of variable compressor inlet guide vanes (14) before engaging the second combustor (15). For engaging the second combustor, the row of variable compressor inlet guide vanes (14) is quickly closed and fuel is introduced in a synchronized manner into the burner (9) of the second combustor (15). A further modification is the deactivating of individual burners (9) at part load.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 7, 2013
    Assignee: ALSTOM Technology Ltd.
    Inventors: Adnan Eroglu, Klaus Knapp, Peter Flohr, Hans Peter Knöpfel, Weiqun Geng
  • Patent number: 8375723
    Abstract: In method for operating a gas turbine (11), the compressed air is fed to a combustor (18, 19) for the combustion of a coal syngas, and the resulting hot gases are expanded in a subsequent turbine (16, 17). Some of the compressed air is separated into oxygen and nitrogen, and the oxygen is used for producing the syngas. In a first combustor, (18) syngas is combusted and the resulting hot gases are expanded in a first turbine (16), and in a second combustor syngas is combusted, using the gases which issue from the first turbine (16), and the resulting hot gases are expanded in the second turbine (17). The two combustors (18, 19) are operated with undiluted syngas, and the first combustor flame temperature (TF) is lowered compared with the operation with natural gas (TNG), while the second combustor (19) is operated in the normal operation (TNG) for natural gas.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 19, 2013
    Assignee: ALSTOM Technology Ltd.
    Inventors: Eribert Benz, Peter Flohr, Adnan Eroglu, Felix Guethe, Jaan Hellat
  • Publication number: 20120260665
    Abstract: A reheat combustor for a gas turbine engine includes a fuel/gas mixer for mixing fuel, air and combustion gases produced by a primary combustor and expanded through a high pressure turbine. Fuel injectors inject fuel into the mixer together with spent cooling air previously used for convectively cooling the reheat combustor. The fuel mixture is burnt in an annular reheat combustion chamber prior to expansion through low pressure turbine inlet guide vanes. The fuel/gas mixer and optionally the combustion chamber define cooling paths through which cooling air flows to convectively cool their walls. The fuel injectors are also convectively cooled by the cooling air after it has passed through the fuel/gas mixer cooling paths. The low pressure turbine inlet guide vanes may also define convective cooling paths in series with the combustion chamber cooling paths.
    Type: Application
    Filed: May 17, 2012
    Publication date: October 18, 2012
    Applicant: ALSTOM Technology Ltd
    Inventors: Adnan EROGLU, Thiemo MEEUWISSEN, Peter FLOHR
  • Patent number: 8128398
    Abstract: A burner for a heat generator comprises a swirl generator (1) for a combustion-air flow and means for injecting fuel for producing a main flow (6). A combustion chamber (2) is arranged downstream of the burner. A cavity (3) is arranged between the swirl generator (1) and the combustion chamber (2), in which cavity (3) a secondary flow (10) can be produced, and this secondary flow (10) encloses the main flow (6).
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: March 6, 2012
    Assignee: ALSTOM Technology Ltd.
    Inventors: Peter Flohr, Ephraim Gutmark, Christian Oliver Paschereit
  • Publication number: 20120017601
    Abstract: In a method for the low-CO emissions part load operation of a gas turbine with sequential combustion, the air ratio (?) of the operative burners (9) of the second combustor (15) is kept below a maximum air ratio (?max) at part load In order to reduce the maximum air ratio (?), a series of modifications in the operating concept of the gas turbine are carried out individually or in combination. One modification is an opening of the row of variable compressor inlet guide vanes (14) before engaging the second combustor (15). For engaging the second combustor, the row of variable compressor inlet guide vanes (14) is quickly closed and fuel is introduced in a synchronized manner into the burner (9) of the second combustor (15). A further modification is the deactivating of individual burners (9) at part load.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 26, 2012
    Inventors: Adnan Eroglu, Klaus Knapp, Peter Flohr, Hans Peter Knöpfel, Weiqun Geng
  • Patent number: 8072043
    Abstract: A semiconductor component and a method for manufacturing such a semiconductor component which has a resistance behavior which depends heavily on the temperature. This resistance behavior is obtained by a special multi-layer structure of the semiconductor component, one layer being designed in such a way that, for example, multiple p-doped regions are present in an n-doped region, said regions being short-circuited on one side via a metal-plated layer. For example, the semiconductor component may be used for reducing current peaks, by being integrated into a conductor. In the cold state, the semiconductor component has a high resistance which becomes significantly lower when the semiconductor component is heated as a result of the flowing current.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: December 6, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Peter Flohrs, Alfred Goerlach, Peter Urbach, Wolfgang Feiler, Ning Qu, Klaus Heyers
  • Patent number: 7997896
    Abstract: A premix burner with staged liquid fuel supply is described having at least two partial cone shells which on the radial side form the boundary of a swirl chamber which axialwards conically widens, which partial cone shells are arranged in a partially overlapping manner, the center axes of the partial cone shells of which extend with offset effect in relation to each another, and the mutually overlapping partial cone shell sections of which enclose in each case an air inlet slot which extends tangentially to the swirl chamber, with a burner lance which projects axialwards into the swirl chamber, which lance provides means for feed of liquid fuel into the swirl chamber, and also with further means for feed of liquid fuel which are provided in the region of the air inlet slots.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: August 16, 2011
    Assignee: Alstom Technology Ltd
    Inventors: Peter Flohr, Gijsbertus Oomens, Martin Zajadatz
  • Patent number: 7972133
    Abstract: A burner (23) for operating a heat generator includes a swirler (2) for a combustion air flow (9), and also devices (7, 12) for injecting at least one fuel into the combustion air flow (9), wherein a mixing path (3) is arranged downstream of the swirler (2), and wherein at least one nozzle (20) for feeding liquid pilot fuel is arranged in the region radially outside the discharge opening of the mixing path (3) of the burner. With such a burner, an operating mode which is as pollutant-free and overheating-free as possible can be enabled even at low load and under transient conditions if the at least one nozzle (20) is arranged in a burner front plate (32), wherein at least one discharge opening (15), through which the pilot fuel discharges into the combustion chamber (16), is provided in a front face (34) of the burner front plate (32), which is arranged essentially parallel to a combustion chamber rear wall (28).
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 5, 2011
    Assignee: ALSTOM Technology Ltd.
    Inventors: Stefano Bernero, Peter Flohr, Gijsbertus Oomens, Martin Zajadatz
  • Patent number: 7908842
    Abstract: In a method for operating a gas turbine (GT) with sequential combustion, which has at least one compressor (12, 13), a first combustion chamber (14) with a first turbine (15) which is connected downstream, and a second combustion chamber (16) with a second turbine (17) which is connected downstream, the at least one compressor (12, 13) draws in air and compresses it. The compressed air is fed to the first combustion chamber (14) for combusting a first fuel, and the gas which issues from the first turbine (15) is fed to the second combustion chamber (16) for combusting a second fuel. Increased flexibility and safety in operation is achieved by different fuels being used as first and second fuel.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: March 22, 2011
    Assignee: ALSTOM Technology Ltd.
    Inventors: Adnan Eroglu, Jaan Hellat, Felix Guethe, Peter Flohr
  • Patent number: 7901203
    Abstract: A combustion chamber (1), in particular in a gas turbine, has at least two burners (A-H) that are connected to a fuel supply (3) via controllable fuel valves (2? and 2). Each burner (A to H) is assigned at least one optical measuring device (4) for detecting chemiluminescent radiation, and the combustion chamber (1) is assigned a pressure sensor (7) for detecting a combustion chamber pressure. The optical measuring device (4) and the pressure sensor (7) are connected to a computing and control device, which calculates a correlation value from the incoming measured values. A high correlation value signifies that the associated burner is prone to pulsation. The computing and control device (6) is designed in such a way that it determines the burner or a burner group with the highest correlation and controls the associated fuel valve(s) in such a way that more fuel is fed to the respective burner or the respective burner group, and the pulsation tendency thereof is thereby reduced.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 8, 2011
    Assignee: ALSTOM Technology Ltd.
    Inventors: Alexander Ni, Valter Bellucci, Peter Flohr, Bruno Schuermans, Majed Toqan, Ken-Yves Haffner
  • Patent number: 7896646
    Abstract: A premixing burner is disclosed for operating a combustion chamber with a liquid and/or gaseous fuel, with a swirl generator for a combustion inflow air stream for forming a swirl flow, and with injection of fuel into the swirl flow. The swirl generator is adjacent to the combustion chamber indirectly via a mixing zone or directly, in each case via a burner outlet, a cross-sectional widening at the burner outlet being provided which, is discontinuous in the flow direction of the swirl flow and through which the swirl flow bursts open so as to form a backflow zone. A contour locally narrowing the flow cross section of the swirl generator or of the mixing zone in the flow direction can be provided upstream of the burner outlet.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: March 1, 2011
    Assignee: Alstom Technology Ltd
    Inventors: Peter Flohr, Christian Oliver Paschereit
  • Patent number: 7878799
    Abstract: What are described are a multiple burner arrangement and a method for operating such a multiple burner arrangement with a multiplicity of individual burners which are designed as premix burners and which serve for firing a combustion chamber of a thermal engine and each have a swirl space into which combustion supply air and fuel can be introduced so as to form a swirl flow, the swirl flow forming downstream of the premix burner, within the combustion chamber, a backflow zone in which a burner flame is formed.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: February 1, 2011
    Assignee: Alstom Technology Ltd
    Inventors: Peter Flohr, Christian Joerg Motz, Majed Toqan, Martin Zajadatz
  • Patent number: 7827777
    Abstract: A combustor arrangement for a gas turbine engine (31) has a split line (42) and a plurality of burners (20,37) arranged in an annular ring (40). The burners (46) of the combustor on either side of the split line (42) have a separation distance of at least two times the average separation distance between burners (48) distant from the split line (42).
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: November 9, 2010
    Assignee: ALSTOM Technology Ltd.
    Inventors: Adnan Eroglu, Oliver Riccius, Klaus Knapp, Peter Flohr
  • Patent number: 7726019
    Abstract: A modification method for reducing emissions from an annular shaped combustor of a gas turbine plant, having uniformly spaced circumferentially mounted premix burners (20), includes the steps of: removing at least one burner (20), thereby disrupting the spatial uniformity of the remaining the burners (20); and modifying the combustor air distribution system so as to compensate for the increased burner pressure drop of the remaining burners, thus enabling the modified combustor to operate at a load equivalent to the unmodified combustor. Emission reduction is enabled by the increase in the gas velocity of the burner for a given load further enabled by the flame stabilizing effect of disrupting the spatial uniformity.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: June 1, 2010
    Assignee: ALSTOM Technology Ltd.
    Inventors: Adnan Eroglu, Oliver Riccius, Klaus Knapp, Peter Flohr
  • Publication number: 20090282831
    Abstract: A modification method for reducing emissions from an annular shaped combustor of a gas turbine plant, having uniformly spaced circumferentially mounted premix burners (20), includes the steps of: removing at least one burner (20), thereby disrupting the spatial uniformity of the remaining the burners (20); and modifying the combustor air distribution system so as to compensate for the increased burner pressure drop of the remaining burners, thus enabling the modified combustor to operate at a load equivalent to the unmodified combustor. Emission reduction is enabled by the increase in the gas velocity of the burner for a given load further enabled by the flame stabilizing effect of disrupting the spatial uniformity.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 19, 2009
    Inventors: Adnan Eroglu, Oliver Riccius, Klaus Knapp, Peter Flohr
  • Publication number: 20090282830
    Abstract: A combustor arrangement for a gas turbine engine (31) has a split line (42) and a plurality of burners (20,37) arranged in an annular ring (40). The burners (46) of the combustor on either side of the split line (42) have a separation distance of at least two times the average separation distance between burners (48) distant from the split line (42).
    Type: Application
    Filed: May 7, 2009
    Publication date: November 19, 2009
    Inventors: Adnan Eroglu, Oliver Riccius, Klaus Knapp, Peter Flohr
  • Publication number: 20090260368
    Abstract: A method for operating a gas turbine (11), which is used especially in a combined-cycle power plant (30), includes inducting and compressing air by the gas turbine (11), the compressed air is fed to a combustor (18, 19) for the combustion of a syngas which is produced from coal, and the hot gases which result during the combustion are expanded in a subsequent turbine (16, 17), performing work, wherein some of the compressed air is separated into oxygen and nitrogen, and the oxygen is used in a coal gasification plant (34) for producing the syngas.
    Type: Application
    Filed: May 26, 2009
    Publication date: October 22, 2009
    Inventors: Eribert Benz, Peter Flohr, Adnan Eroglu, Felix Guethe, Jaan Hellat
  • Patent number: 7584598
    Abstract: In a method for operating a gas turbine (11) in a combined cycle power plant (40), air, which is used to burn a syngas that is recovered from coal is drawn in by the gas turbine (11) and compressed, is led to a combustor (18, 19), and a portion of the compressed air is separated into oxygen and nitrogen. An improved degree of efficiency is achieved by virtue of the fact that a gas turbine (11) with reheating is used, which includes two combustors (18,19) and two turbines (16, 17), in which, in the first combustor (18) syngas is burned using compressed air, and the resultant hot gases are expanded and in which, in the second combustor, syngas is burned using the gases coming from the first turbine (16) and the resultant hot gases are expanded in the second turbine (17), and that the nitrogen that occurs in the separation of the air is used to cool the gas turbine (11).
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: September 8, 2009
    Assignee: Alstom Technology Ltd.
    Inventors: Eribert Benz, Peter Flohr, Manfred Wirsum