Patents by Inventor Peter John Cousins

Peter John Cousins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190245099
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 8, 2019
    Applicant: SunPower Corporation
    Inventors: Gabriel HARLEY, David D. SMITH, Peter John COUSINS
  • Publication number: 20190189809
    Abstract: Voltage breakdown devices for solar cells are described. For example, a solar cell includes a semiconductor substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A plurality of conductive contacts is coupled to the plurality of alternating N-type and P-type semiconductor regions. A voltage breakdown device is disposed above the substrate. The voltage breakdown device includes one of the plurality of conductive contacts in electrical contact with one of the N-type semiconductor regions and with one of the P-type semiconductor regions of the plurality of alternating N-type and P-type semiconductor regions disposed in or above the substrate.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Inventor: Peter John Cousins
  • Patent number: 10217880
    Abstract: Voltage breakdown devices for solar cells are described. For example, a solar cell includes a semiconductor substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A plurality of conductive contacts is coupled to the plurality of alternating N-type and P-type semiconductor regions. A voltage breakdown device is disposed above the substrate. The voltage breakdown device includes one of the plurality of conductive contacts in electrical contact with one of the N-type semiconductor regions and with one of the P-type semiconductor regions of the plurality of alternating N-type and P-type semiconductor regions disposed in or above the substrate.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: February 26, 2019
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Patent number: 10211349
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: February 19, 2019
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, David D. Smith, Peter John Cousins
  • Publication number: 20190019904
    Abstract: Solar cell fabrication using laser patterning of ion-implanted etch-resistant layers, and the resulting solar cells, are described. In an example, a back contact solar cell includes an N-type single crystalline silicon substrate having a light-receiving surface and a back surface. Alternating continuous N-type emitter regions and segmented P-type emitter regions are disposed on the back surface of the N-type single crystalline silicon substrate, with gaps between segments of the segmented P-type emitter regions. Trenches are included in the N-type single crystalline silicon substrate between the alternating continuous N-type emitter regions and segmented P-type emitter regions and in locations of the gaps between segments of the segmented P-type emitter regions. An approximately Gaussian distribution of P-type dopants is included in the N-type single crystalline silicon substrate below the segmented P-type emitter regions.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 17, 2019
    Inventors: Staffan Westerberg, Alejandro Levander, Peter John Cousins
  • Patent number: 10096728
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. Selective firing of a conductive paste can be used to form a conductive contact for a solar cell. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a conductive paste that has a top and bottom portion with the top portion having particles coalesced together.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: October 9, 2018
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, Taeseok Kim, Michael Morse, Peter John Cousins, Kevin Mikio Mukai
  • Publication number: 20180286995
    Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Inventors: MICHAEL C. JOHNSON, TAIQING QIU, DAVID D. SMITH, PETER JOHN COUSINS, STAFFAN WESTERBERG
  • Patent number: 10079319
    Abstract: Solar cell fabrication using laser patterning of ion-implanted etch-resistant layers, and the resulting solar cells, are described. In an example, a back contact solar cell includes a maximum concentration of the approximately Gaussian distribution of P-type dopants approximately in the center of each of segmented P-type emitter regions between first and second sides of each of the segmented P-type emitter regions.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 18, 2018
    Assignee: SunPower Corporation
    Inventors: Staffan Westerberg, Alejandro Levander, Peter John Cousins
  • Patent number: 9997652
    Abstract: Methods of fabricating solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a thin dielectric layer on a surface of a substrate by radical oxidation or plasma oxidation of the surface of the substrate. The method also involves forming a silicon layer over the thin dielectric layer. The method also involves forming a plurality of emitter regions from the silicon layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 12, 2018
    Assignee: SunPower Corporation
    Inventors: Michael C. Johnson, Taiqing Qiu, David D. Smith, Peter John Cousins, Staffan Westerberg
  • Publication number: 20180130920
    Abstract: Solar cells having a plurality of sub-cells coupled by metallization structures, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, a solar cell, includes a plurality of sub-cells, each of the sub-cells having a singulated and physically separated semiconductor substrate portion. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there between. The solar cell also includes a monolithic metallization structure. A portion of the monolithic metallization structure couples ones of the plurality of sub-cells. The groove between adjacent ones of the singulated and physically separated semiconductor substrate portions exposes a portion of the monolithic metallization structure.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 10, 2018
    Inventors: Gabriel Harley, Michael Morse, Peter John Cousins
  • Patent number: 9960292
    Abstract: A solar cell includes negative metal contact fingers and positive metal contact fingers. The negative metal contact fingers are interdigitated with the positive metal contact fingers. The metal contact fingers, both positive and negative, have a radial design where they radially extend to surround at least 25% of a perimeter of a corresponding contact pad. The metal contact fingers have bend points, which collectively form a radial pattern with a center point within the contact pad. Exactly two metal contact pads merge into a single leading metal contact pad that is wider than either of the exactly two metal contact pads.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: May 1, 2018
    Assignee: SunPower Corporation
    Inventors: Staffan Westerberg, Peter John Cousins
  • Publication number: 20180069136
    Abstract: Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
    Type: Application
    Filed: October 26, 2017
    Publication date: March 8, 2018
    Inventors: Gabriel Harley, David Smith, Tim Dennis, Ann Waldhauer, Taeseok Kim, Peter John Cousins
  • Patent number: 9893222
    Abstract: Solar cells having a plurality of sub-cells coupled by metallization structures, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, a solar cell, includes a plurality of sub-cells, each of the sub-cells having a singulated and physically separated semiconductor substrate portion. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there between. The solar cell also includes a monolithic metallization structure. A portion of the monolithic metallization structure couples ones of the plurality of sub-cells. The groove between adjacent ones of the singulated and physically separated semiconductor substrate portions exposes a portion of the monolithic metallization structure.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: February 13, 2018
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, Michael Morse, Peter John Cousins
  • Patent number: 9831359
    Abstract: Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: November 28, 2017
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, David D. Smith, Tim Dennis, Ann Waldhauer, Taeseok Kim, Peter John Cousins
  • Publication number: 20170288068
    Abstract: Voltage breakdown devices for solar cells are described. For example, a solar cell includes a semiconductor substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A plurality of conductive contacts is coupled to the plurality of alternating N-type and P-type semiconductor regions. A voltage breakdown device is disposed above the substrate. The voltage breakdown device includes one of the plurality of conductive contacts in electrical contact with one of the N-type semiconductor regions and with one of the P-type semiconductor regions of the plurality of alternating N-type and P-type semiconductor regions disposed in or above the substrate.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 5, 2017
    Inventor: Peter John Cousins
  • Publication number: 20170179310
    Abstract: Solar cell fabrication using laser patterning of ion-implanted etch-resistant layers, and the resulting solar cells, are described. In an example, a back contact solar cell includes an N-type single crystalline silicon substrate having a light-receiving surface and a back surface. Alternating continuous N-type emitter regions and segmented P-type emitter regions are disposed on the back surface of the N-type single crystalline silicon substrate, with gaps between segments of the segmented P-type emitter regions. Trenches are included in the N-type single crystalline silicon substrate between the alternating continuous N-type emitter regions and segmented P-type emitter regions and in locations of the gaps between segments of the segmented P-type emitter regions. An approximately Gaussian distribution of P-type dopants is included in the N-type single crystalline silicon substrate below the segmented P-type emitter regions.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 22, 2017
    Inventors: Staffan Westerberg, Alejandro Levander, Peter John Cousins
  • Patent number: 9608131
    Abstract: A silicon solar cell has doped amorphous silicon contacts formed on a tunnel silicon oxide layer on a surface of a silicon substrate. High temperature processing is unnecessary in fabricating the solar cell.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: March 28, 2017
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Publication number: 20170062640
    Abstract: Solar cells having a plurality of sub-cells coupled by metallization structures, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, a solar cell, includes a plurality of sub-cells, each of the sub-cells having a singulated and physically separated semiconductor substrate portion. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there between. The solar cell also includes a monolithic metallization structure. A portion of the monolithic metallization structure couples ones of the plurality of sub-cells. The groove between adjacent ones of the singulated and physically separated semiconductor substrate portions exposes a portion of the monolithic metallization structure.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Gabriel Harley, Michael Morse, Peter John Cousins
  • Publication number: 20170033251
    Abstract: A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 2, 2017
    Applicant: SunPower Corporation
    Inventor: Peter John COUSINS
  • Patent number: 9556512
    Abstract: A system for substrate deposition is disclosed. The system includes a wafer pallet and an anode. The wafer pallet has a bottom and a top. The top of the wafer pallet is configured to hold a substrate wafer. The anode has a substantially fixed position relative to the wafer pallet and is configured to move with the wafer pallet through the deposition chamber. The anode is electrically isolated from the substrate wafer.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: January 31, 2017
    Assignee: SunPower Corporation
    Inventors: Peter John Cousins, Hsin-Chiao Luan, Thomas Pass, John Ferrer, Rex Gallardo, Stephen F. Meyer