Patents by Inventor Peter John Cousins

Peter John Cousins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110272016
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS
  • Patent number: 8008575
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 30, 2011
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins
  • Publication number: 20110061731
    Abstract: Fabrication of a solar cell using a printed contact mask. The contact mask may include dots formed by inkjet printing. The dots may be formed in openings between dielectric layers (e.g., polyimide). Intersections of overlapping dots may form gaps that define contact regions. The spacing of the gaps may be dictated by the alignment of nozzles that dispense the dots. Using the dots as a contact mask, an underlying dielectric layer may be etched to form the contact regions through the underlying dielectric layer. Metal contact fingers may be formed over the wafer to form electrical connections to corresponding diffusion regions through the contact regions.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Inventors: Peter John COUSINS, Michael Joseph CUDZINOVIC
  • Publication number: 20110059571
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS, David D. SMITH
  • Publication number: 20110003424
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 6, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS, Richard M. SWANSON, Jane E. MANNING
  • Publication number: 20110000540
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 6, 2011
    Inventors: Denis DE CEUSTER, Peter John COUSINS, Richard M. SWANSON, Jane E. MANNING
  • Patent number: 7851698
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 14, 2010
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, David D. Smith
  • Patent number: 7838062
    Abstract: Fabrication of a solar cell using a printed contact mask. The contact mask may include dots formed by inkjet printing. The dots may be formed in openings between dielectric layers (e.g., polyimide). Intersections of overlapping dots may form gaps that define contact regions. The spacing of the gaps may be dictated by the alignment of nozzles that dispense the dots. Using the dots as a contact mask, an underlying dielectric layer may be etched to form the contact regions through the underlying dielectric layer. Metal contact fingers may be formed over the wafer to form electrical connections to corresponding diffusion regions through the contact regions.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: November 23, 2010
    Assignee: Sunpower Corporation
    Inventors: Peter John Cousins, Michael Joseph Cudzinovic
  • Publication number: 20100269904
    Abstract: A silicon solar cell has doped amorphous silicon contacts formed on a tunnel silicon oxide layer on a surface of a silicon substrate. High temperature processing is unnecessary in fabricating the solar cell.
    Type: Application
    Filed: May 25, 2010
    Publication date: October 28, 2010
    Inventor: Peter John Cousins
  • Patent number: 7820475
    Abstract: In one embodiment, active diffusion junctions of a solar cell are formed by diffusing dopants from dopant sources selectively deposited on the back side of a wafer. The dopant sources may be selectively deposited using a printing method, for example. Multiple dopant sources may be employed to form active diffusion regions of varying doping levels. For example, three or four active diffusion regions may be fabricated to optimize the silicon/dielectric, silicon/metal, or both interfaces of a solar cell. The front side of the wafer may be textured prior to forming the dopant sources using a texturing process that minimizes removal of wafer material. Openings to allow metal gridlines to be connected to the active diffusion junctions may be formed using a self-aligned contact opening etch process to minimize the effects of misalignments.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 26, 2010
    Assignee: Sunpower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, Richard M. Swanson, Jane E. Manning
  • Publication number: 20100218800
    Abstract: A superstrate, such as a sheet of polymer film, is used as a transport during metallization of solar cells. The back sides of the solar cells are attached to the sheet of polymer film. Contact holes are formed through the sheet of polymer film to expose doped regions of the solar cells. Metals are formed in the contact holes to electrically connect to the exposed doped regions of the solar cells. The metals are electroplated to form metal contacts of the solar cell. Subsequently, the solar cells are separated from other solar cells that were metallized while supported by the same sheet of polymer film to form strings of solar cells or individual solar cells.
    Type: Application
    Filed: August 3, 2009
    Publication date: September 2, 2010
    Inventor: Peter John COUSINS
  • Patent number: 7737357
    Abstract: A silicon solar cell has doped amorphous silicon contacts formed on a tunnel silicon oxide layer on a surface of a silicon substrate. High temperature processing is unnecessary in fabricating the solar cell.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: June 15, 2010
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Publication number: 20100139745
    Abstract: A solar cell uses a sliver of a silicon wafer as a substrate. The sliver has a front side that faces the sun during normal operation. The front side of the sliver includes a surface from along a thickness of the wafer, allowing for more efficient use of silicon. Metal contacts are formed on the back side of the sliver. The metal contacts electrically connect to the emitter and base of the solar cell, which may be formed within the sliver or be made of polysilicon. The emitter of the solar cell may be a P-type doped region and the base of the solar cell may be an N-type doped region, for example. The solar cell may include an anti-reflective coating formed on the front side of the sliver. The anti-reflective coating may be over a textured surface on the front side of the sliver.
    Type: Application
    Filed: February 24, 2009
    Publication date: June 10, 2010
    Inventor: Peter John COUSINS
  • Patent number: 7718888
    Abstract: A solar cell having backside contacts is economically fabricated through use of acceptor and donor polymers which are inkjet printed in interleaved patterns on the back surface as the carrier accepting electrodes of the solar cell. The polymers can be placed on a tunnel oxide on the surface of a semiconductor substrate, or the polymers can be in direct contact with the semiconductor substrate. Electrical patterns interconnecting the acceptor and donor polymer patterns can also be formed by inkjet printing a seed layer and then electroplating the seed layer. Advantageously, high temperature processing is not required in the process as is required in conventional solar cell fabrication using dopant implants into the semiconductor substrate. In alternative embodiments, doped contacts are diffused in the top surface and a polymer contact is formed over the back surface.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 18, 2010
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Publication number: 20100075234
    Abstract: A contact mask for inkjet printing on a solar cell substrate may be generated by creating a printing bitmap of contacts to be printed on the solar cell substrate. The contacts may be located on the solar cell substrate by mapping coordinates of the printing bitmap to coordinates of the solar cell substrate as positioned in the inkjet printer. The location of the contacts on the solar cell substrate may be defined relative to a location on the solar cell substrate, such as relative to center of mass. The contact mask may be printed by the inkjet printer using the printing bitmap and location information of the contacts.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Inventor: Peter John Cousins
  • Publication number: 20100000597
    Abstract: A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 7, 2010
    Inventor: Peter John Cousins
  • Publication number: 20090308438
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Application
    Filed: February 25, 2009
    Publication date: December 17, 2009
    Inventors: Denis DE CEUSTER, Peter John COUSINS, David D. SMITH
  • Publication number: 20090205712
    Abstract: A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Inventor: Peter John Cousins
  • Publication number: 20080299297
    Abstract: Fabrication of a solar cell using a printed contact mask. The contact mask may include dots formed by inkjet printing. The dots may be formed in openings between dielectric layers (e.g., polyimide). Intersections of overlapping dots may form gaps that define contact regions. The spacing of the gaps may be dictated by the alignment of nozzles that dispense the dots. Using the dots as a contact mask, an underlying dielectric layer may be etched to form the contact regions through the underlying dielectric layer. Metal contact fingers may be formed over the wafer to form electrical connections to corresponding diffusion regions through the contact regions.
    Type: Application
    Filed: May 29, 2007
    Publication date: December 4, 2008
    Inventors: Peter John Cousins, Michael Joseph Cudzinovic
  • Publication number: 20080017243
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Application
    Filed: July 24, 2006
    Publication date: January 24, 2008
    Inventors: Denis De Ceuster, Peter John Cousins