Patents by Inventor Peter John Cousins

Peter John Cousins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150108692
    Abstract: A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
    Type: Application
    Filed: September 19, 2014
    Publication date: April 23, 2015
    Inventors: Gabriel HARLEY, Thomas PASS, Peter John COUSINS, John VIATELLA
  • Publication number: 20150083215
    Abstract: A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
    Type: Application
    Filed: October 2, 2014
    Publication date: March 26, 2015
    Inventor: Peter John COUSINS
  • Patent number: 8963185
    Abstract: A superstrate, such as a sheet of polymer film, is used as a transport during metallization of solar cells. The back sides of the solar cells are attached to the sheet of polymer film. Contact holes are formed through the sheet of polymer film to expose doped regions of the solar cells. Metals are formed in the contact holes to electrically connect to the exposed doped regions of the solar cells. The metals are electroplated to form metal contacts of the solar cell. Subsequently, the solar cells are separated from other solar cells that were metallized while supported by the same sheet of polymer film to form strings of solar cells or individual solar cells.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: February 24, 2015
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Publication number: 20140345688
    Abstract: A silicon solar cell has doped amorphous silicon contacts formed on a tunnel silicon oxide layer on a surface of a silicon substrate. High temperature processing is unnecessary in fabricating the solar cell.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventor: Peter John COUSINS
  • Patent number: 8883247
    Abstract: Fabrication of a solar cell using a printed contact mask. The contact mask may include dots formed by inkjet printing. The dots may be formed in openings between dielectric layers (e.g., polyimide). Intersections of overlapping dots may form gaps that define contact regions. The spacing of the gaps may be dictated by the alignment of nozzles that dispense the dots. Using the dots as a contact mask, an underlying dielectric layer may be etched to form the contact regions through the underlying dielectric layer. Metal contact fingers may be formed over the wafer to form electrical connections to corresponding diffusion regions through the contact regions.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 11, 2014
    Assignee: SunPower Corporation
    Inventors: Peter John Cousins, Michael Joseph Cudzinovic
  • Publication number: 20140326308
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Applicant: SUNPOWER CORPORATION
    Inventors: Gabriel HARLEY, David D. SMITH, Peter John COUSINS
  • Patent number: 8878053
    Abstract: A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: November 4, 2014
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Patent number: 8859933
    Abstract: A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 14, 2014
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, Thomas Pass, Peter John Cousins, John Viatella
  • Patent number: 8815631
    Abstract: A silicon solar cell has doped amorphous silicon contacts formed on a tunnel silicon oxide layer on a surface of a silicon substrate. High temperature processing is unnecessary in fabricating the solar cell.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: August 26, 2014
    Assignee: SunPower Corporation
    Inventor: Peter John Cousins
  • Patent number: 8785236
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: July 22, 2014
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, David D. Smith, Peter John Cousins
  • Publication number: 20140190561
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 10, 2014
    Applicant: Sunpower Corporation
    Inventors: Denis DE CEUSTER, Peter John COUSINS
  • Publication number: 20140134787
    Abstract: The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 15, 2014
    Applicant: SUNPOWER CORPORATION
    Inventors: Gabriel Harley, David D. Smith, Peter John Cousins
  • Publication number: 20140096824
    Abstract: Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 10, 2014
    Applicant: SUNPOWER CORPORATION
    Inventors: Gabriel HARLEY, David D. SMITH, Tim DENNIS, Ann WALDHAUER, Taeseok KIM, Peter John COUSINS
  • Patent number: 8692111
    Abstract: Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Throughput of the solar cell ablation process is improved by incorporating linear base diffusion regions with narrow width, for example as compared to an overlying metal contact. Throughput of the solar cell ablation process may also be improved by having contact holes to base diffusion regions that are perpendicular to contact holes to emitter diffusion regions. To allow for continuous laser scanning, a laser blocking layer may be located over an interlayer dielectric to prevent contact hole formation on certain regions, such as regions where a metal contact of one polarity may electrically shunt to a diffusion region of opposite polarity. In a hybrid design, a solar cell may have both linear and dotted base diffusion regions. An electro-optical modulator may be employed to allow for continuous laser scanning in dotted base diffusion designs.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: April 8, 2014
    Assignee: SunPower Corporation
    Inventors: Taeseok Kim, Gabriel Harley, David D. Smith, Peter John Cousins
  • Patent number: 8673673
    Abstract: A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: March 18, 2014
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins, David D. Smith
  • Patent number: 8664519
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: March 4, 2014
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins
  • Publication number: 20140034122
    Abstract: A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.
    Type: Application
    Filed: May 30, 2012
    Publication date: February 6, 2014
    Inventor: Peter John COUSINS
  • Publication number: 20140034107
    Abstract: A superstrate, such as a sheet of polymer film, is used as a transport during metallization of solar cells. The back sides of the solar cells are attached to the sheet of polymer film. Contact holes are formed through the sheet of polymer film to expose doped regions of the solar cells. Metals are formed in the contact holes to electrically connect to the exposed doped regions of the solar cells. The metals are electroplated to form metal contacts of the solar cell. Subsequently, the solar cells are separated from other solar cells that were metallized while supported by the same sheet of polymer film to form strings of solar cells or individual solar cells.
    Type: Application
    Filed: March 18, 2013
    Publication date: February 6, 2014
    Inventor: Peter John COUSINS
  • Publication number: 20140038338
    Abstract: A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
    Type: Application
    Filed: June 13, 2012
    Publication date: February 6, 2014
    Inventor: Peter John COUSINS
  • Publication number: 20140014499
    Abstract: A system for substrate deposition is disclosed. The system includes a wafer pallet and an anode. The wafer pallet has a bottom and a top. The top of the wafer pallet is configured to hold a substrate wafer. The anode has a substantially fixed position relative to the wafer pallet and is configured to move with the wafer pallet through the deposition chamber. The anode is electrically isolated from the substrate wafer.
    Type: Application
    Filed: September 10, 2013
    Publication date: January 16, 2014
    Inventors: Peter John Cousins, Hsin-Chiao Luan, Thomas Pass, John Ferrer, Rex Gallardo, Stephen F. Meyer