Patents by Inventor Peter Rabkin

Peter Rabkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11430745
    Abstract: A method of forming a semiconductor structure includes forming first semiconductor devices over a first substrate, forming a first dielectric material layer over the first semiconductor devices, forming vertical recesses in the first dielectric material layer, such that each of the vertical recesses vertically extends from a topmost surface of the first dielectric material layer toward the first substrate, forming silicon nitride material portions in each of the vertical recesses; and locally irradiating a second subset of the silicon nitride material portions with a laser beam.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: August 30, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Chen Wu, Peter Rabkin, Yangyin Chen, Masaaki Higashitani
  • Patent number: 11424215
    Abstract: A nucleation suppression layer including a self-assembly material can be formed on a surface of a bonding dielectric layer without depositing the self-assembly material on physically exposed surfaces of first metal bonding pads of a first semiconductor die. Metallic liners including a second metal can be formed on the physically exposed surfaces of the metal bonding pads without depositing the second metal on the nucleation suppression layer. The first semiconductor die is bonded to a second semiconductor die by inducing metal-to-metal bonding between mating pairs of the first metal bonding pads and second metal bonding pads of the second semiconductor die.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: August 23, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Lin Hou, Peter Rabkin, Yangyin Chen, Masaaki Higashitani
  • Publication number: 20220246562
    Abstract: A bonded assembly includes a first semiconductor die and a second semiconductor die. The first semiconductor die includes first metallic bonding pads embedded in first dielectric material layers, the second semiconductor die includes second metallic bonding pads embedded in second dielectric material layers, the first metallic bonding pads are bonded to a respective one of the second metallic bonding pads; and each of the first metallic bonding pads includes a corrosion barrier layer containing an alloy of a primary bonding metal and at least one corrosion-suppressing element that is different from the primary bonding metal.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 4, 2022
    Inventors: Lin HOU, Peter RABKIN, Masaaki HIGASHITANI
  • Patent number: 11404123
    Abstract: A non-volatile memory includes a non-volatile memory array comprising blocks of non-volatile memory cells, bit lines connected to the memory cells and word lines connected to the memory cells. Word line switch transistors connect the word lines to voltage sources. The word line switch transistors are positioned in triple wells. Multiple triple wells are utilized and the word line switch transistors are grouped into triple wells based on word line voltage ranges used during the programming process. In one embodiment, for a given block, the word line switch transistors connected to data word lines are positioned in a first triple well and the word line switch transistors connected to selection and dummy word lines are positioned in a second triple well. This structure allows the triple wells to be biased differently.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: August 2, 2022
    Assignee: SanDisk Technologies LLC
    Inventors: Shiqian Shao, Fumiaki Toyama, Yuki Mizutani, Mohan Dunga, Peter Rabkin
  • Patent number: 11398451
    Abstract: A semiconductor structure includes a memory die bonded to a support die. The memory die includes an alternating stack of insulating layers and electrically conductive layers located over a first single crystalline semiconductor layer, and memory stack structures extending through the alternating stack and containing respective memory film and a respective vertical semiconductor channel including a single crystalline channel semiconductor material. The support die includes a peripheral circuitry. Substrates employed to provide the memory die and the support die can be reused by replacing one of the substrates with an alternative low-cost substrate that provides structural support to the bonded assembly.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: July 26, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Baraskar, Raghuveer S. Makala, Peter Rabkin
  • Publication number: 20220208748
    Abstract: A semiconductor structure includes a memory die bonded to a logic die. The memory die includes an alternating stack of insulating layers and electrically conductive layers; memory openings extending through the alternating stack, memory opening fill structures located in the memory openings and comprising a respective vertical semiconductor channel and a respective memory film, a source layer contacting the vertical semiconductor channels, a backside isolation dielectric layer contacting a backside surface of the source layer, and a source power supply mesh including a planar portion of a source-side electrically conductive layer that is located on a backside of the backside isolation dielectric layer and electrically connected to the source layer by conductive material portions that extend through the backside isolation dielectric layer.
    Type: Application
    Filed: December 28, 2020
    Publication date: June 30, 2022
    Inventors: Peter RABKIN, Masaaki HIGASHITANI, Kwang-ho KIM
  • Patent number: 11374020
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers, and a memory stack structure vertically extending through the alternating stack. The memory stack structure includes a vertical semiconductor channel and a memory film. The vertical semiconductor channel can include a III-V compound semiconductor channel material. A III-V compound substrate semiconductor layer or a III-V compound semiconductor source region can be used to provide low-resistance electrical connection to a bottom end of the vertical semiconductor channel, and a drain region including a graded III-V compound semiconductor material can be used to provide low-resistance electrical connection to a top end of the vertical semiconductor channel.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: June 28, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Baraskar, Peter Rabkin, Raghuveer S. Makala
  • Patent number: 11362079
    Abstract: A method of forming a bonded assembly includes providing a first semiconductor die containing a first substrate, first semiconductor devices, first dielectric material layers overlying the first semiconductor devices, and first metal interconnect structures, providing a second semiconductor die containing a second substrate, second semiconductor devices, second dielectric material layers overlying the second semiconductor devices, and second metal interconnect structures, depositing a manganese layer on a top surface of the first dielectric material layers, disposing the second semiconductor die on the manganese layer such that a surface of the second dielectric material layers contacts the manganese layer, and performing a bonding anneal to bond the first semiconductor die to the second semiconductor die and to convert the manganese layer into a manganese-containing oxide layer, such that the manganese-containing oxide layer is bonded to the first dielectric material layers and the second dielectric material
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: June 14, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Chen Wu, Peter Rabkin, Masaaki Higashitani
  • Publication number: 20220173071
    Abstract: A first bonding unit is provided, which includes a first substrate, a first passivation dielectric layer, and first bonding pads. A second bonding unit is provided, which includes a second substrate, a second passivation dielectric layer, and second bonding pads including bonding pillar structures. Solder material portions are formed on physically exposed surfaces of the first bonding pads. The second bonding unit is attached to the first bonding unit by bonding the at least one of the bonding pillar structures to a respective solder material portion.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 2, 2022
    Inventors: Lin HOU, Peter RABKIN, Yangyin CHEN, Masaaki HIGASHITANI
  • Patent number: 11348901
    Abstract: A first bonding unit is provided, which includes a first substrate, a first passivation dielectric layer, and first bonding pads. A second bonding unit is provided, which includes a second substrate, a second passivation dielectric layer, and second bonding pads including bonding pillar structures. Solder material portions are formed on physically exposed surfaces of the first bonding pads. The second bonding unit is attached to the first bonding unit by bonding the at least one of the bonding pillar structures to a respective solder material portion.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: May 31, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Lin Hou, Peter Rabkin, Yangyin Chen, Masaaki Higashitani
  • Patent number: 11335790
    Abstract: A semiconductor structure contains a semiconductor channel extending between a source region and a drain region, at least one gate electrode, a ferroelectric material portion located between the semiconductor channel and the at least one gate electrode, a front-side gate dielectric located between the ferroelectric material portion and the semiconductor channel, and a backside gate dielectric located between the ferroelectric material portion and the at least one gate electrode. The front-side gate dielectric and the backside gate dielectric have a dielectric constant greater than 7.9 and a band gap greater than a band gap of the ferroelectric material portion.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: May 17, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Peter Rabkin, Masaaki Higashitani
  • Publication number: 20220149002
    Abstract: A nucleation suppression layer including a self-assembly material can be formed on a surface of a bonding dielectric layer without depositing the self-assembly material on physically exposed surfaces of first metal bonding pads of a first semiconductor die. Metallic liners including a second metal can be formed on the physically exposed surfaces of the metal bonding pads without depositing the second metal on the nucleation suppression layer. The first semiconductor die is bonded to a second semiconductor die by inducing metal-to-metal bonding between mating pairs of the first metal bonding pads and second metal bonding pads of the second semiconductor die.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 12, 2022
    Inventors: Lin HOU, Peter RABKIN, Yangyin CHEN, Masaaki HIGASHITANI
  • Patent number: 11322509
    Abstract: A memory device includes a silicon-germanium source contact layer, an alternating stack of insulating layers and electrically conductive layers located over the silicon-germanium source contact layer, and a memory stack structure vertically extending through the alternating stack. The memory stack structure comprises a memory film and a vertical semiconductor channel that contacts the memory film. The silicon-germanium source contact layer contacts a cylindrical portion of an outer sidewall of the vertical semiconductor channel. Logic circuits for operating the memory elements may be provided on a substrate within a same semiconductor die, or may be provided in another semiconductor die that is bonded to the semiconductor die containing the memory device.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: May 3, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Baraskar, Raghuveer S. Makala, Peter Rabkin
  • Patent number: 11302713
    Abstract: A stack including a silicon oxide layer, a germanium-containing layer, and a III-V compound semiconductor layer is formed over a substrate. An alternating stack of insulating layers and spacer material layers is formed over the III-V compound semiconductor layer. The spacer material layers are formed as, or are subsequently replaced with, electrically conductive layers. Memory openings are formed through the alternating stack and into the III-V compound semiconductor layer. Memory opening fill structures including a memory film and a vertical semiconductor channel are formed in the memory openings. The vertical semiconductor channels can include a III-V compound semiconductor channel material that is electrically connected to the III-V compound semiconductor layer. The substrate and at least a portion of the silicon oxide layer can be subsequently detached.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: April 12, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Kumar Baraskar, Raghuveer S. Makala, Peter Rabkin
  • Patent number: 11296113
    Abstract: A semiconductor structure includes at least one set of vertical field effect transistors embedded within dielectric material layers overlying a substrate. Each vertical field effect transistor includes a bottom doped semiconductor electrode, a vertical transistor channel, a cylindrical gate dielectric, and a top doped semiconductor electrode. A three-dimensional NAND memory array can be provided over the first field effect transistors, and can be electrically connected to the vertical field effect transistors via metal interconnect structures. Alternatively, a three-dimensional NAND memory array can be formed on another substrate, which can be bonded to the substrate via metal-to-metal bonding. The vertical field effect transistors can be employed as switches for bit lines, word lines, or other components of the three-dimensional NAND memory array.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: April 5, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Kwang-Ho Kim, Peter Rabkin
  • Publication number: 20220093555
    Abstract: A method of forming a bonded assembly includes providing a first semiconductor die containing and first metallic bonding structures and a first dielectric capping layer containing openings and contacting distal horizontal surfaces of the first metallic bonding structures, providing a second semiconductor die containing second metallic bonding structures, disposing the second semiconductor die in contact with the first semiconductor die, and annealing the second semiconductor die in contact with the first semiconductor die such that a metallic material of at least one of the first metallic bonding structures and the second metallic bonding structures expands to fill the openings in the first dielectric capping layer to bond at least a first subset of the first metallic bonding structures to at least a first subset of the second metallic bonding structures.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Lin HOU, Peter RABKIN, Yangyin CHEN, Masaaki HIGASHITANI, Rahul SHARANGPANI
  • Patent number: 11282857
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers, and a memory stack structure vertically extending through the alternating stack. The memory stack structure includes a vertical semiconductor channel and a memory film. The vertical semiconductor channel can include a III-V compound semiconductor channel material. A III-V compound substrate semiconductor layer or a III-V compound semiconductor source region can be used to provide low-resistance electrical connection to a bottom end of the vertical semiconductor channel, and a drain region including a graded III-V compound semiconductor material can be used to provide low-resistance electrical connection to a top end of the vertical semiconductor channel.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 22, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Baraskar, Peter Rabkin, Raghuveer S. Makala
  • Patent number: 11276705
    Abstract: A semiconductor structure includes a first semiconductor die containing a recesses, and a second semiconductor die which is embedded in the recess in the first semiconductor die and is bonded to the first semiconductor die.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: March 15, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Chen Wu, Peter Rabkin, Yangyin Chen, Masaaki Higashitani
  • Patent number: 11270963
    Abstract: A semiconductor die includes a first pad-level dielectric layer embedding first bonding pads and located over a first substrate. Each of the first bonding pads is located within a respective pad cavity in the first pad-level dielectric layer. Each of the first bonding pads includes a first metallic liner containing a first metallic liner material and contacting a sidewall of the respective pad cavity, a first metallic fill material portion embedded in the first metallic liner, and a metallic electromigration barrier layer contacting the first metallic fill material portion and adjoined to the first metallic liner.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: March 8, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Chen Wu, Peter Rabkin, Masaaki Higashitani
  • Publication number: 20220068966
    Abstract: A semiconductor structure includes at least one set of vertical field effect transistors embedded within dielectric material layers overlying a substrate. Each vertical field effect transistor includes a bottom electrode, a metal oxide semiconductor vertical transistor channel, a cylindrical gate dielectric, and a top electrode. A three-dimensional NAND memory array can be provided over the first field effect transistors, and can be electrically connected to the vertical field effect transistors via metal interconnect structures. Alternatively, a three-dimensional NAND memory array can be formed on another substrate, which can be bonded to the substrate via metal-to-metal bonding. The vertical field effect transistors can be employed as switches for bit lines, word lines, or other components of the three-dimensional NAND memory array.
    Type: Application
    Filed: June 29, 2021
    Publication date: March 3, 2022
    Inventors: Peter RABKIN, Masaaki HIGASHITANI