Patents by Inventor Peter Rabkin

Peter Rabkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210065802
    Abstract: A memory system is provided with technology for performing temperature dependent impedance mitigation, in addition to or instead of other techniques to compensate for differences in impedance. For example, the memory system comprises a plurality of non-volatile memory cells, a first pathway connected to the plurality of non-volatile memory cells, a second pathway connected to the plurality of non-volatile memory cells, and a control circuit connected to the first pathway and the second pathway. The control circuit is configured to compensate based on temperature for a temperature dependent impedance mismatch between the first pathway and the second pathway during a memory operation on the plurality of non-volatile memory cells.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 4, 2021
    Applicant: SANDISK TECHNOLOGIES LLC
    Inventors: Peter Rabkin, Kwang-Ho Kim, Masaaki Higashitani
  • Publication number: 20210066317
    Abstract: A semiconductor structure includes a first semiconductor die containing a recesses, and a second semiconductor die which is embedded in the recess in the first semiconductor die and is bonded to the first semiconductor die.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 4, 2021
    Inventors: Chen WU, Peter RABKIN, Yangyin CHEN, Masaaki HIGASHITANI
  • Publication number: 20210050054
    Abstract: Apparatuses and techniques are provided for programming memory cells while reducing widening of a threshold voltage distribution due to changes in the temperature between the time of programming and the time of a subsequent read operation. One technique is based on a correlation between program speed and temperature coefficient (Tco). A different verify test is used for different memory cells which have a common assigned data state according to the program loop number and the temperature. Another technique is based on sensing the memory cells to measure their subthreshold slope and classifying the memory cells into groups. The sensing can occur as a separate operation before programming or as part of the programming of user data. The subsequent programming of the memory cells involves adjusting the verify test of each memory cell based on its group and the temperature.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 18, 2021
    Applicant: SanDisk Technologies LLC
    Inventors: Biswajit Ray, Peter Rabkin, Mohan Dunga, Gerrit Jan Hemink, Changyuan Chen
  • Patent number: 10923196
    Abstract: An apparatus for erasing non-volatile storage elements in a non-volatile memory system is disclosed. The apparatus has consistent speed in gate induced drain leakage (GIDL) erase across the operating temperature of the memory system. In one aspect, a voltage source outputs an erase voltage to NAND strings. The NAND strings may draw a GIDL erase current in response to the erase voltage. The amount of GIDL erase current for a given erase voltage is highly temperature dependent. The GIDL erase current may be sampled, and the erase voltage regulated based on the GIDL erase current. Therefore, the GIDL erase current, as well as erase speed, may be kept uniform across operating temperatures.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: February 16, 2021
    Assignee: SanDisk Technologies LLC
    Inventors: Peter Rabkin, Kwang-Ho Kim, Masaaki Higashitani
  • Patent number: 10910064
    Abstract: An apparatus comprising strings of non-volatile memory cells, a first set of pathways connected to the strings, and a second set of pathways connected to the strings. The first set of pathways have first impedances that depend on location of respective strings. The second set of pathways having second impedances. The apparatus also includes one or more control circuits configured to compensate for location dependent impedance mismatch between the first set of pathways and the second set of pathways during memory operations on the non-volatile memory cells.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: February 2, 2021
    Assignee: SanDisk Technologies LLC
    Inventors: Peter Rabkin, Kwang-Ho Kim, Masaaki Higashitani
  • Publication number: 20210028148
    Abstract: A bonded assembly includes a first semiconductor die including a first substrate, first semiconductor devices located on the first substrate, first dielectric material layers located on the first semiconductor devices and embedding first metal interconnect structures, and first through-substrate via structures extending through the first substrate and contacting a respective first metal interconnect structure. Each of the first through-substrate via structures laterally surrounds a respective core cavity that contains a void or a dielectric fill material portion.
    Type: Application
    Filed: July 25, 2019
    Publication date: January 28, 2021
    Inventors: Chen WU, Peter RABKIN, Yangyin CHEN, Masaaki HIGASHITANI
  • Publication number: 20200395350
    Abstract: A method of forming a bonded assembly includes providing a first semiconductor die containing a first substrate, first semiconductor devices, first dielectric material layers overlying the first semiconductor devices, and first metal interconnect structures, providing a second semiconductor die containing a second substrate, second semiconductor devices, second dielectric material layers overlying the second semiconductor devices, and second metal interconnect structures, depositing a manganese layer on a top surface of the first dielectric material layers, disposing the second semiconductor die on the manganese layer such that a surface of the second dielectric material layers contacts the manganese layer, and performing a bonding anneal to bond the first semiconductor die to the second semiconductor die and to convert the manganese layer into a manganese-containing oxide layer, such that the manganese-containing oxide layer is bonded to the first dielectric material layers and the second dielectric material
    Type: Application
    Filed: June 13, 2019
    Publication date: December 17, 2020
    Inventors: Chen WU, Peter RABKIN, Masaaki HIGASHITANI
  • Publication number: 20200388688
    Abstract: A memory device includes a silicon-germanium source contact layer, an alternating stack of insulating layers and electrically conductive layers located over the silicon-germanium source contact layer, and a memory stack structure vertically extending through the alternating stack. The memory stack structure comprises a memory film and a vertical semiconductor channel that contacts the memory film. The silicon-germanium source contact layer contacts a cylindrical portion of an outer sidewall of the vertical semiconductor channel. Logic circuits for operating the memory elements may be provided on a substrate within a same semiconductor die, or may be provided in another semiconductor die that is bonded to the semiconductor die containing the memory device.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Ashish BARASKAR, Raghuveer S. MAKALA, Peter RABKIN
  • Publication number: 20200388626
    Abstract: A memory device includes a silicon-germanium source contact layer, an alternating stack of insulating layers and electrically conductive layers located over the silicon-germanium source contact layer, and a memory stack structure vertically extending through the alternating stack. The memory stack structure comprises a memory film and a vertical semiconductor channel that contacts the memory film. The silicon-germanium source contact layer contacts a cylindrical portion of an outer sidewall of the vertical semiconductor channel. Logic circuits for operating the memory elements may be provided on a substrate within a same semiconductor die, or may be provided in another semiconductor die that is bonded to the semiconductor die containing the memory device.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Ashish BARASKAR, Raghuveer S. MAKALA, Peter RABKIN
  • Patent number: 10847452
    Abstract: A non-volatile storage apparatus comprises a non-volatile memory structure and a plurality of I/O pads in communication with the non-volatile memory structure. The I/O pads include a power I/O pad, a ground I/O pad and data/control I/O pads. The non-volatile storage apparatus further comprises one or more capacitors connected to the power I/O pad and the ground I/O pad. The one or more capacitors are positioned in one or more metal interconnect layers below the signal lines and/or above device capacitors on the top surface of the substrate.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: November 24, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Luisa Lin, Mohan Dunga, Venkatesh P. Ramachandra, Peter Rabkin, Masaaki Higashitani
  • Patent number: 10840259
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers containing molybdenum portions located over a substrate, memory stack structures extending through the alternating stack, and including a memory film and a vertical semiconductor channel, and a backside blocking dielectric layer of a dielectric oxide material including aluminum atoms and at least one of lanthanum or zirconium atoms which directly contacts the molybdenum portions.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: November 17, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Peter Rabkin, Raghuveer S. Makala, Masaaki Higashitani
  • Publication number: 20200343161
    Abstract: First semiconductor devices, a first dielectric material layer, a porous dielectric material layer, and a metal interconnect structure formed within a second dielectric material layer are formed on a front-side surface of a first semiconductor substrate. A via cavity extending through the first semiconductor substrate and the first dielectric material layer are formed. The via cavity stops on the porous dielectric material layer. A continuous network of pores that are free of any solid material therein continuously extends from a bottom of the via cavity to a surface of the metal interconnect structure. A through-substrate via structure is formed in the via cavity. The through-substrate via structure includes a porous metallic material portion filling the continuous network of pores and contacting surface portions of the metal interconnect structure. Etch damage to the first semiconductor devices and metallic particle generation may be minimized by using the porous metallic material portion.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Chen WU, Peter RABKIN, Masaaki HIGASHITANI
  • Publication number: 20200321061
    Abstract: Methods and systems for improving the reliability of data stored within a semiconductor memory over a wide range of operating temperatures are described. The amount of shifting in the threshold voltages of memory cell transistors over temperature may depend on the location of the memory cell transistors within a NAND string. To compensate for these variations, the threshold voltages of memory cell transistors in the middle of the NAND string or associated with a range of word lines between the ends of the NAND string may be adjusted by increasing the word line voltages biasing memory cell transistors on the drain-side of the selected word line when the read temperature is greater than a first threshold temperature and/or decreasing the word line voltages biasing memory cell transistors on the source-side of the selected word line when the read temperature is less than a second threshold temperature.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Applicant: SANDISK TECHNOLOGIES LLC
    Inventors: Dae Wung Kang, Peter Rabkin, Masaaki Higashitani
  • Patent number: 10789992
    Abstract: A non-volatile storage apparatus comprises a non-volatile memory structure and a plurality of I/O pads in communication with the non-volatile memory structure. The I/O pads include a power I/O pad, a ground I/O pad and data/control I/O pads. The non-volatile storage apparatus further comprises one or more capacitors connected to the power I/O pad. The one or more capacitors are positioned in one or more metal interconnect layers below the I/O pads.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: September 29, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Luisa Lin, Mohan Dunga, Venkatesh P. Ramachandra, Peter Rabkin, Masaaki Higashitani
  • Publication number: 20200294909
    Abstract: A non-volatile storage apparatus comprises a non-volatile memory structure and a plurality of I/O pads in communication with the non-volatile memory structure. The I/O pads include a power I/O pad, a ground I/O pad and data/control I/O pads. The non-volatile storage apparatus further comprises one or more capacitors connected to the power I/O pad and the ground I/O pad. The one or more capacitors are positioned in one or more metal interconnect layers below the signal lines and/or above device capacitors on the top surface of the substrate.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Applicant: SANDISK TECHNOLOGIES LLC
    Inventors: Luisa Lin, Mohan Dunga, Venkatesh P. Ramachandra, Peter Rabkin, Masaaki Higashitani
  • Publication number: 20200294910
    Abstract: A non-volatile storage apparatus comprises a non-volatile memory structure and a plurality of I/O pads in communication with the non-volatile memory structure. The I/O pads include a power I/O pad, a ground I/O pad and data/control I/O pads. The non-volatile storage apparatus further comprises one or more capacitors connected to the power I/O pad and the ground I/O pad. The one or more capacitors are positioned in one or more metal interconnect layers below the signal lines and/or above device capacitors on the top surface of the substrate.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Applicant: SANDISK TECHNOLOGIES LLC
    Inventors: Luisa Lin, Mohan Dunga, Venkatesh P. Ramachandra, Peter Rabkin, Masaaki Higashitani
  • Publication number: 20200295039
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers containing molybdenum portions located over a substrate, memory stack structures extending through the alternating stack, and including a memory film and a vertical semiconductor channel, and a backside blocking dielectric layer of a dielectric oxide material including aluminum atoms and at least one of lanthanum or zirconium atoms which directly contacts the molybdenum portions.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Inventors: Peter RABKIN, Raghuveer S. MAKALA, Masaaki HIGASHITANI
  • Patent number: 10763271
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, and memory stack structures extending through the alternating stack. Each of the memory stack structures comprises a memory film and a vertical semiconductor channel contacting an inner sidewall of the memory film. The electrically conductive layers include aluminum and silicon and provide low resistance electrically conductive paths as word lines of the three-dimensional memory device. The aluminum-based electrically conductive layers can provide low resistivity, low mechanical stress, and thermal stability for use as high performance word lines.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: September 1, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Peter Rabkin, Masaaki Higashitani, Jayavel Pachamuthu
  • Patent number: 10755788
    Abstract: An apparatus comprising an impedance compensation circuit is disclosed. The impedance compensation circuit compensates for impedance differences between a first pathway connected to a first transistor and a second pathway connected to a second transistor. However, rather than making a compensation based on a signal (e.g., voltage) applied to either the first or the second pathway, a compensation is made based on the signals (e.g., voltage pulses) applied to third and fourth pathways connected to the transistors.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: August 25, 2020
    Assignee: SanDisk Technologies LLC
    Inventors: Peter Rabkin, Kwang-Ho Kim, Masaaki Higashitani, Yingda Dong
  • Patent number: 10726926
    Abstract: Methods and systems for improving the reliability of data stored within a semiconductor memory over a wide range of operating temperatures are described. The amount of shifting in the threshold voltages of memory cell transistors over temperature may depend on the location of the memory cell transistors within a NAND string. To compensate for these variations, the threshold voltages of memory cell transistors in the middle of the NAND string or associated with a range of word lines between the ends of the NAND string may be adjusted by increasing the word line voltages biasing memory cell transistors on the drain-side of the selected word line when the read temperature is greater than a first threshold temperature and/or decreasing the word line voltages biasing memory cell transistors on the source-side of the selected word line when the read temperature is less than a second threshold temperature.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: July 28, 2020
    Assignee: SANDISK TECHNOLOGIES LLP
    Inventors: Dae Wung Kang, Peter Rabkin, Masaaki Higashitani