Patents by Inventor Peter Trefonas

Peter Trefonas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9102901
    Abstract: The invention provides a process for removing a film from a substrate, said process comprising applying a composition to the film, and wherein the composition comprises at least the following: a) water; and b) at least one compound selected from the following compounds (i-v): i) NR4HF2 (Formula 1), wherein R?H, alkyl, substituted alkyl, ii) NR4F (Formula 2), wherein R?H, alkyl, substituted alkyl, iii) HF (hydrofluoric acid), iv) H2SiF6 (hexafluorosilicic acid), or v) combinations thereof. The invention also provides a composition comprising at least the following: a) water; and b) at least one compound selected from the following compounds (i-v): i) NR4HF2 (Formula 1), wherein R?H, alkyl, substituted alkyl, ii) NR4F (Formula 2), wherein R?H, alkyl, substituted alkyl, iii) HF (hydrofluoric acid), iv) H2SiF6 (hexafluorosilicic acid), or v) combinations thereof.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 11, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Deyan Wang, Martin W. Bayes, Peter Trefonas, Kathleen M. O'connell
  • Publication number: 20150210793
    Abstract: A crosslinkable polymer comprising: a first unit of the following general formula (I-A) or (I-B): wherein: P is a polymerizable functional group; L is a single bond or an m+1-valent linking group; X1 is a monovalent electron donating group; X2 is a divalent electron donating group; Ar1 and Ar2 are trivalent and divalent aryl groups, respectively, and carbon atoms of the cyclobutene ring are bonded to adjacent carbon atoms on the same aromatic ring of Ar1 or Ar2; m and n are each an integer of 1 or more; and each R1 is independently a monovalent group; and a second unit chosen from general formulae (III) and (IV): wherein R7 is chosen from hydrogen, fluorine, C1-C3 alkyl and C1-C3 fluoroalkyl, R8 is chosen from optionally substituted C1 to C10 alkyl, and Ar3 is an optionally substituted aryl group. Underlayer compositions comprise the crosslinkable polymer and a solvent.
    Type: Application
    Filed: December 31, 2014
    Publication date: July 30, 2015
    Inventors: Jong Keun PARK, Jibin SUN, Christopher D. GILMORE, Jieqian ZHANG, Phillip D. HUSTAD, Peter TREFONAS, III, Kathleen M. O'Connell
  • Patent number: 9076719
    Abstract: Disclosed herein is a method for doping a substrate, comprising disposing a coating of a composition comprising a dopant-containing polymer and a non-polar solvent on a substrate; and annealing the substrate at a temperature of 750 to 1300° C. for 1 second to 24 hours to diffuse the dopant into the substrate; wherein the dopant-containing polymer is a polymer having a covalently bound dopant atom; wherein the dopant-containing polymer is free of nitrogen and silicon; and wherein the method is free of a step of forming an oxide capping layer over the coating prior to the annealing step.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: July 7, 2015
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, ROHM AND HAAS ELECTRONICS MATERIALS LLC
    Inventors: Rachel A. Segalman, Megan L. Hoarfrost, Ali Javey, Kuniharu Takei, Peter Trefonas, III
  • Publication number: 20150183935
    Abstract: Disclosed herein is a block copolymer comprising a first block derived from a vinyl aromatic monomer; where the vinyl aromatic monomer has at least one alkyl substitution on an aromatic ring; a second block derived from a siloxane monomer; where a chi parameter that measures interactions between the first block and the second block is 0.03 to 0.18 at a temperature of 200° C. Disclosed herein is a method comprising polymerizing a vinyl aromatic monomer to form a first block; and polymerizing a second block onto the first block to form a block copolymer; where the second block is derived by polymerizing a siloxane monomer; and where the block copolymer has a chi parameter of 0.03 to 0.18 at a temperature of 200° C.; where the chi parameter is a measure of interactions between the first block and the second block of the copolymer.
    Type: Application
    Filed: December 23, 2014
    Publication date: July 2, 2015
    Inventors: Shih-Wei CHANG, Jong Keun PARK, John W. KRAMER, Erin B. VOGEL, Phillip D. HUSTAD, Peter TREFONAS, III
  • Publication number: 20150184017
    Abstract: Disclosed herein is a method comprising disposing a mat composition on a surface of a semiconductor substrate; where the mat composition comprises a random copolymer comprising a first acrylate unit and a second unit; where the copolymer does not comprise a polystyrene or a polyepoxide; crosslinking the random copolymer; disposing a brush backfill composition on the substrate; such that the brush backfill composition and the mat composition alternate with each other; disposing on the brush backfill composition and on the mat composition a block copolymer that undergoes self assembly; and etching the block copolymer to create uniformly spaced channels in the semiconductor substrate.
    Type: Application
    Filed: December 23, 2014
    Publication date: July 2, 2015
    Inventors: Phillip D. HUSTAD, Peter TREFONAS, III, Jong Keun PARK
  • Publication number: 20150184024
    Abstract: Disclosed herein is a composition comprising a brush polymer; where the brush polymer comprises a reactive moiety that is reacted to a substrate upon which it is disposed; and a block copolymer; where the block copolymer comprises a first block and a second block that are covalently bonded to each other; where the first block comprises a first polymer and a second block comprises a second polymer; where the first polymer comprises less than or equal to 10 atomic percent polysiloxane; where the second polymer comprises at least 15 atomic percent polysiloxane; where the brush polymer is chemically different from the first polymer and the second polymer; and where the first polymer is chemically different from the second polymer; and wherein the block copolymer is disposed upon the brush polymer.
    Type: Application
    Filed: December 23, 2014
    Publication date: July 2, 2015
    Inventors: Shih-Wei CHANG, Jong Keun PARK, John W. KRAMER, Erin B. VOGEL, Phillip D. HUSTAD, Peter TREFONAS, III
  • Patent number: 9070548
    Abstract: The invention provides a composition comprising at least the following A and B: A) a polymer comprising, in polymerized from, at least one “monomer that comprises at least one hydroxyl group;” and B) an organometal compound comprising at least one metal selected from Ti, Zr, Hf, Co, Mn, Zn, or combinations thereof, and wherein the organometal compound is present in an amount greater than 5 weight percent, based on the sum weight of A and B.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: June 30, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Deyan Wang, Jibin Sun, Peter Trefonas, Kathleen M. O'connell
  • Publication number: 20150179467
    Abstract: Some embodiments include methods of forming patterns. A first mask is formed over a material. The first mask has features extending therein and defines a first pattern. The first pattern has a first level of uniformity across a distribution of the features. A brush layer is formed across the first mask and within the features to narrow the features and create a second mask from the first mask. The second mask has a second level of uniformity across the narrowed features which is greater than the first level of uniformity. A pattern is transferred from the second mask into the material.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 25, 2015
    Applicants: Micron Technology, Inc., Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: William R. Brown, Adam Olson, Kaveri Jain, Ho Seop Eom, Xue Gloria Chen, Nik Mirin, Dan Millward, Peter Trefonas, III, Phillip Dene Hustad, Jong Keun Park, Christopher Nam Lee
  • Patent number: 9066425
    Abstract: Method of manufacturing patterned conductor is provided, comprising: providing a conductivized substrate, wherein the conductivized substrate comprises a substrate and an electrically conductive layer; providing an electrically conductive layer etchant; providing a spinning material; providing a masking fiber solvent; forming a plurality of masking fibers and depositing the plurality of masking fibers onto the electrically conductive layer; exposing the electrically conductive layer to the electrically conductive layer etchant, wherein the electrically conductive layer that is uncovered by the plurality of masking fibers is removed from the substrate, leaving an interconnected conductive network on the substrate covered by the plurality of masking fibers; and, exposing the plurality of masking fibers to the masking fiber solvent, wherein the plurality of masking fibers are removed to uncover the interconnected conductive network on the substrate.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: June 23, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Jake Joo, Jerome Claracq, Sylvie Vervoort, Mubasher Bashir, Peter Trefonas, Garo Khanarian, Kathleen O'Connell
  • Publication number: 20150166884
    Abstract: A transformative wavelength conversion medium is provided, comprising: a phosphor; and, a curable liquid component, wherein the curable liquid component, comprises: an aliphatic resin component, wherein the aliphatic resin component has an average of at least two epoxide groups per molecule; and, a curing agent; wherein the curable liquid component contains less than 0.5 wt % of monoepoxide molecules (based on the total weight of the aliphatic resin component); wherein the curable liquid component contains 1 to 90 wt % of polyepoxide molecules containing at least three epoxide groups per molecule (based on the total weight of the aliphatic resin component); and, wherein the curable liquid component is a liquid at 25° C. and atmospheric pressure; wherein the phosphor is dispersed in the curable liquid component.
    Type: Application
    Filed: November 21, 2014
    Publication date: June 18, 2015
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Robert E. Hefner, Jr., Kishori Deshpande, Maurice J. Marks, Peter Trefonas, Jong Keun Park, Jieqian Zhang
  • Publication number: 20150166711
    Abstract: Polymeric reaction products of certain aromatic alcohols with certain aromatic aldehydes are useful as underlayers in semiconductor manufacturing processes.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 18, 2015
    Inventors: Li CUI, Sung Wook CHO, Mingqi LI, Shintaro YAMADA, Peter TREFONAS, III, Robert L. AUGER
  • Publication number: 20150166885
    Abstract: A transformative wavelength conversion medium is provided, comprising: a phosphor; and, a curable liquid component, wherein the curable liquid component, comprises: an aliphatic resin component, wherein the aliphatic resin component has an average of two epoxide groups per molecule; and, a curing agent; wherein the curable liquid component contains less than 0.5 wt % of monoepoxide molecules (based on the total weight of the aliphatic resin component); and, wherein the curable liquid component is a liquid at 25° C. and atmospheric pressure; and, wherein the phosphor is dispersed in the curable liquid component.
    Type: Application
    Filed: November 21, 2014
    Publication date: June 18, 2015
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Kishori Deshpande, Robert E. Hefner, JR., Peter Trefonas, Maurice J. Marks, Jong Keun Park, Jieqian Zhang
  • Patent number: 9040114
    Abstract: A method of manufacturing a silver miniwire film is provided, wherein the film exhibits a reduced sheet resistance.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: May 26, 2015
    Assignee: Rohm and Haas Electronic Material LLC
    Inventors: Garo Khanarian, Kathleen M. O'connell, Peter Trefonas, Jerome Claracq, Lijia Bu, Jaebum Joo
  • Patent number: 9012545
    Abstract: A copolymer composition and a method of processing a substrate to form line space features thereon are provided.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 21, 2015
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Xinyu Gu, Shih-Wei Chang, Rahul Sharma, Valeriy Ginzburg, Phillip Hustad, Jeffrey Weinhold, Peter Trefonas
  • Publication number: 20150072292
    Abstract: Disclosed herein is a photoresist composition comprising a graft block copolymer; a solvent and a photoacid generator; where the graft block copolymer comprises a first block polymer; the first block polymer comprising a backbone polymer and a first graft polymer; where the first graft polymer comprises a surface energy reducing moiety that comprises a halocarbon moiety or a silicon containing moiety; and a second block polymer; the second block polymer being covalently bonded to the first block; wherein the second block comprises the backbone polymer and a second graft polymer; where the second graft polymer comprises a functional group that is operative to undergo deprotection and alter the solubility of the graft block copolymer; where the graft block copolymer has a bottle brush topology.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Inventors: Sangho Cho, Guorong Sun, Karen L. Wooley, James W. Thackeray, Peter Trefonas, III
  • Publication number: 20150072291
    Abstract: Disclosed herein is a graft block copolymer comprising a first block polymer; the first block polymer comprising a backbone polymer and a first graft polymer; where the first graft polymer comprises a surface energy reducing moiety that comprises a halocarbon moiety, a silicon containing moiety, or a combination of a halocarbon moiety and a silicon containing moiety; a second block polymer; the second block polymer being covalently bonded to the first block; wherein the second block comprises the backbone polymer and a second graft polymer; where the second graft polymer comprises a functional group that is operative to undergo acid-catalyzed deprotection causing a change of solubility of the graft block copolymer in a developer solvent.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicants: ROHM AND HAAS ELECTRONIC MATERIALS LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Sangho Cho, Guorong Sun, Karen L. Wooley, James W. Thackeray, Peter Trefonas, III
  • Publication number: 20150056793
    Abstract: Disclosed herein is a method for doping a substrate, comprising disposing a coating of a composition comprising a dopant-containing polymer and a non-polar solvent on a substrate; and annealing the substrate at a temperature of 750 to 1300° C. for 1 second to 24 hours to diffuse the dopant into the substrate; wherein the dopant-containing polymer is a polymer having a covalently bound dopant atom; wherein the dopant-containing polymer is free of nitrogen and silicon; and wherein the method is free of a step of forming an oxide capping layer over the coating prior to the annealing step.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicants: Rohm and Haas Electronic Materials LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Rachel A. Segalman, Megan L. Hoarfrost, Ali Javey, Kuniharu Takei, Peter Trefonas, III
  • Patent number: 8961918
    Abstract: A method for processing a substrate is provided; wherein the method comprises applying a film of a copolymer composition, comprising a poly(styrene)-b-poly(dimethylsiloxane) block copolymer component to a surface of the substrate; optionally, baking the film; subjecting the film to a high temperature annealing process under particularized atmospheric conditions for a specified period of time; followed by a treatment of the annealed film to remove the poly(styrene) from the annealed film and to convert the poly(dimethylsiloxane) in the annealed film to SiOx.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 24, 2015
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Shih-Wei Chang, Jeffrey D. Weinhold, Phillip D. Hustad, Peter Trefonas
  • Publication number: 20150024607
    Abstract: Organoaluminum coating compositions are used to deposit films on various substrates, which films are subsequently cured to form oxide films useful in a variety of manufacturing applications, particularly where a gas barrier may be used.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Deyan WANG, Kathleen M. O'CONNELL, Peter TREFONAS, III
  • Publication number: 20150024522
    Abstract: Coating compositions are used to deposit films on electronic device substrates, which films are subjected to conditions that form an oxymetal precursor material layer on a matrix precursor material layer, and then such layers are cured to form a cured oxymetal layer disposed on a cured matrix layer.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Deyan WANG, Peter TREFONAS, III, Kathleen M. O'CONNELL, Dominic C. YANG