Patents by Inventor Philippe Galy

Philippe Galy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190164973
    Abstract: A memory array includes memory cells of Z2-FET type arranged in rows and columns, wherein each memory cell includes a MOS-type selection transistor and a first region of a first conductivity type that is shared in common with a drain region of the first conductivity type of the selection transistors. The selection transistors of a same column of the memory array have a common drain region, a common source region, and a common channel region.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 30, 2019
    Applicant: STMicroelectronics SA
    Inventors: Hassan EL DIRANI, Thomas BEDECARRATS, Philippe GALY
  • Publication number: 20190114145
    Abstract: An integrated device, for generating a random signal, includes: a first terminal; a pulse signal generator configured to generate a current pulse train on the first terminal; and a first control circuit coupled to the first terminal and configured to convert the current pulse train into a voltage signal randomly including voltage pulses greater than a threshold, the random signal containing the voltage pulses greater than the threshold.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 18, 2019
    Inventors: Philippe Galy, Thomas Bedecarrats
  • Patent number: 10211201
    Abstract: An ESD protection device includes a MOS transistor connected between a first terminal and a second terminal and having a gate region, source/drain region and a well region electrically coupled by a resistive-capacitive circuit configured to control turn on of the MOS transistor in response to an ESD event. The resistive-capacitive circuit has a common part with at least one of the source, gate or drain regions of the MOS transistor and includes a capacitive element and a resistive element. A first electrode of the capacitive element is formed by the resistive element and a second electrode of the capacitive element is formed by at least a portion of a semiconductor film within which the source/drain region is formed.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 19, 2019
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou
  • Publication number: 20180351353
    Abstract: Electrostatic discharge (ESD) protection is provided by a circuit including a resistor having a first terminal and a second terminal, a zener diode having a cathode terminal directly connected to said first terminal and an anode terminal directly connected to a third terminal, and a clamp diode having a cathode terminal directly connected to said second terminal and an anode terminal directly connected to said third terminal.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 6, 2018
    Applicants: STMicroelectronics (Alps) SAS, STMicroelectronics SA
    Inventors: Yves Mazoyer, Philippe Galy, Philippe Sirito-Olivier
  • Patent number: 10128242
    Abstract: A substrate contact land for a first MOS transistor is produced in and on an active zone of a substrate of silicon on insulator type using a second MOS transistor without any PN junction that is also provided in the active zone. A contact land on at least one of a source or drain region of the second MOS transistor forms the substrate contact land.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: November 13, 2018
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou
  • Patent number: 10096708
    Abstract: An integrated electronic device includes a semiconductive film above a buried insulating layer that is situated above a supporting substrate. An active zone is delimited within the semiconductive film. A MOS transistor supported within the active zone includes a gate region situated above the active zone. The gate region includes a rectilinear part situated between source and drain regions. The gate region further includes a forked part extending from the rectilinear part. A raised semiconductive region situated above the active zone is positioned at least partly between portions of the forked part. A substrate contact for the transistor is electrically coupled to the raised semiconductive region.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: October 9, 2018
    Assignee: STMicroelectronics SA
    Inventors: Sotirios Athanasiou, Philippe Galy
  • Publication number: 20180276526
    Abstract: An integrated artificial neuron device includes an input signal node, an output signal node and a reference supply node. An integrator circuit receives and integrates an input signal to produce an integrated signal. A generator circuit receives the integrated signal and, when the integrated signal exceeds a threshold, delivers the output signal. The integrator circuit includes a main capacitor coupled between the input signal node and the reference supply node. The generator circuit includes a main MOS transistor coupled between the input signal node and the output signal node. The main MOS transistor has a gate that is coupled to the output signal node, and a substrate that is mutually coupled to the gate.
    Type: Application
    Filed: September 1, 2017
    Publication date: September 27, 2018
    Applicant: STMicroelectronics SA
    Inventors: Philippe Galy, Thomas Bedecarrats
  • Publication number: 20180276536
    Abstract: An integrated artificial neuron device includes a refractory circuit configured to inhibit signal integration for an inhibition duration after delivery of an output signal. The refractory circuit includes a first MOS transistor coupled between an input node and a reference node and having a gate connected to the output node by a second MOS transistor having a first electrode coupled to the supply node and a gate coupled to the output node. The refractory circuit further includes a resistive-capacitive circuit coupled between the supply node, the reference node and the gate of the second MOS transistor. An inhibition duration depends on a time constant of the resistive-capacitive circuit.
    Type: Application
    Filed: September 7, 2017
    Publication date: September 27, 2018
    Applicant: STMicroelectronics SA
    Inventors: Philippe Galy, Thomas Bedecarrats
  • Publication number: 20180197848
    Abstract: An ESD protection device includes a MOS transistor connected between a first terminal and a second terminal and having a gate region, source/drain region and a well region electrically coupled by a resistive-capacitive circuit configured to control turn on of the MOS transistor in response to an ESD event. The resistive-capacitive circuit has a common part with at least one of the source, gate or drain regions of the MOS transistor and includes a capacitive element and a resistive element. A first electrode of the capacitive element is formed by the resistive element and a second electrode of the capacitive element is formed by at least a portion of a semiconductor film within which the source/drain region is formed.
    Type: Application
    Filed: March 7, 2018
    Publication date: July 12, 2018
    Applicant: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou
  • Patent number: 9991173
    Abstract: An integrated circuit is produced on a bulk semiconductor substrate in a given CMOS technology and includes a semiconductor device for protection against electrostatic discharges. The semiconductor device has a doublet of floating-gate, thyristors coupled in parallel and head-to-tail. Each thyristor has a pair of electrode regions. The two thyristors respectively have two separate gates and a common semiconductor gate region. The product of the current gains of the two transistors of each thyristor is greater than 1. Each electrode region of at least one of the thyristors has a dimension, measured perpendicularly to the spacing direction of the two electrodes of the corresponding pair, which is adjusted so as to impart to the thyristor an intrinsic triggering voltage less than the breakdown voltage of a transistor to be protected, and produced in the CMOS technology.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: June 5, 2018
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Johan Bourgeat
  • Patent number: 9947650
    Abstract: An ESD protection device includes a MOS transistor connected between a first terminal and a second terminal and having a gate region, source/drain region and a well region electrically coupled by a resistive-capacitive circuit configured to control turn on of the MOS transistor in response to an ESD event. The resistive-capacitive circuit has a common part with at least one of the source, gate or drain regions of the MOS transistor and includes a capacitive element and a resistive element. A first electrode of the capacitive element is formed by the resistive element and a second electrode of the capacitive element is formed by at least a portion of a semiconductor film within which the source/drain region is formed.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 17, 2018
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou
  • Publication number: 20180102358
    Abstract: An ESD protection device includes a MOS transistor connected between a first terminal and a second terminal and having a gate region, source/drain region and a well region electrically coupled by a resistive-capacitive circuit configured to control turn on of the MOS transistor in response to an ESD event. The resistive-capacitive circuit has a common part with at least one of the source, gate or drain regions of the MOS transistor and includes a capacitive element and a resistive element. A first electrode of the capacitive element is formed by the resistive element and a second electrode of the capacitive element is formed by at least a portion of a semiconductor film within which the source/drain region is formed.
    Type: Application
    Filed: April 26, 2017
    Publication date: April 12, 2018
    Applicant: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou
  • Publication number: 20180061833
    Abstract: A substrate contact land for a first MOS transistor is produced in and on an active zone of a substrate of silicon on insulator type using a second MOS transistor without any PN junction that is also provided in the active zone. A contact land on at least one of a source or drain region of the second MOS transistor forms the substrate contact land.
    Type: Application
    Filed: November 6, 2017
    Publication date: March 1, 2018
    Applicant: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou
  • Publication number: 20180012965
    Abstract: A transistor includes a quasi-intrinsic region of a first conductivity type that is covered with an insulated gate. The quasi-intrinsic region extends between two first doped regions of a second conductivity type. A main electrode is provided on each of the two first doped regions. A second doped region of a second conductivity type is position in contact with the quasi-intrinsic region, but is electrically and physically separated by a distance from the two first doped regions. A control electrode is provided on the second doped region.
    Type: Application
    Filed: February 8, 2017
    Publication date: January 11, 2018
    Applicant: STMicroelectronics SA
    Inventors: Sotirios Athanasiou, Philippe Galy
  • Patent number: 9837413
    Abstract: A substrate contact land for a first MOS transistor is produced in and on an active zone of a substrate of silicon on insulator type using a second MOS transistor without any PN junction that is also provided in the active zone. A contact land on at least one of a source or drain region of the second MOS transistor forms the substrate contact land.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: December 5, 2017
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou
  • Patent number: 9831288
    Abstract: The invention relates to an integrated circuit (1), comprising: a field-effect transistor (2), comprising: first and second conduction electrodes (201, 202); a channel zone (203) arranged between the first and second conduction electrodes; a gate stack (220) arranged vertically in line with the channel zone, and comprising a gate electrode (222); an RRAM-type memory point (31) formed under the channel zone, or formed in the gate stack under the gate electrode.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: November 28, 2017
    Assignees: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA
    Inventors: Laurent Grenouillet, Sotirios Athanasiou, Philippe Galy
  • Publication number: 20170288059
    Abstract: An integrated electronic device includes a semiconductive film above a buried insulating layer that is situated above a supporting substrate. An active zone is delimited within the semiconductive film. A MOS transistor supported within the active zone includes a gate region situated above the active zone. The gate region includes a rectilinear part situated between source and drain regions. The gate region further includes a forked part extending from the rectilinear part. A raised semiconductive region situated above the active zone is positioned at least partly between portions of the forked part. A substrate contact for the transistor is electrically coupled to the raised semiconductive region.
    Type: Application
    Filed: August 8, 2016
    Publication date: October 5, 2017
    Applicant: STMicroelectronics SA
    Inventors: Sotirios Athanasiou, Philippe Galy
  • Patent number: 9746863
    Abstract: An electronic device includes an integrated circuit with a MOS transistor and a heating circuit electrically coupled to at least two points of one of the source or drain semiconductive region of the transistor. A portion of the source or drain semiconductive region between the two points forms a resistive element. The heating circuit is configured to cause a current to circulate through the resistive element between the two points to heat an active region of the transistor.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: August 29, 2017
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Sotirios Athanasiou, Julien Le Coz, Sylvain Engels
  • Publication number: 20170179196
    Abstract: The invention relates to an integrated circuit (1), comprising: a field-effect transistor (2), comprising: first and second conduction electrodes (201, 202); a channel zone (203) arranged between the first and second conduction electrodes; a gate stack (220) arranged vertically in line with the channel zone, and comprising a gate electrode (222); an RRAM-type memory point (31) formed under the channel zone, or formed in the gate stack under the gate electrode.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 22, 2017
    Applicants: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS (CROLLES 2) SAS, STMICROELECTRONICS SA
    Inventors: Laurent GRENOUILLET, Sotirios Athanasiou, Philippe Galy
  • Patent number: 9660034
    Abstract: An integrated circuit includes SOI-type MOS transistors on insulator, with a first well capable of being biased located under the insulator. The first wells are doped with a first conductivity type. Each first well includes, under the insulator of each transistor, a back gate region that is more heavily doped than the first well. The first wells are separated from each other by inclusion in in a second well that is also capable of being biased. The second well is doped with a second conductivity type.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: May 23, 2017
    Assignee: STMicroelectronics SA
    Inventor: Philippe Galy