Patents by Inventor Pieter Kruit

Pieter Kruit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10903042
    Abstract: Disclosed is an apparatus and method for inspecting a sample. The apparatus includes: a sample holder, a multi beam charged particle generator for generating an array of primary charged particle beams, an electro-magnetic lens system for directing the array of primary charged particle beams into an array of separate focused primary charged particle beams on the sample, a multi-pixel photon detector arranged for detecting photons created by the focused primary charged particle beams when the primary charged particle beams impinge on the sample or after transmission of the primary charged particle beams through the sample, and an optical assembly for conveying photons created by at least two adjacent focused primary charged particle beams of the array of separate focused primary charged particle beams to distinct and/or separate pixels or groups of pixels of the multi-pixel photon detector.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: January 26, 2021
    Inventors: Pieter Kruit, Aernout Zonnevylle, Yan Ren
  • Publication number: 20200273667
    Abstract: The invention relates to a charged particle beam device for inspection of a specimen with a plurality of charged particle beamlets. The charged particle beam device comprises a specimen holder for holding a specimen; a source for producing a beam of charged particles; and an illuminator for converting said beam of charged particles into a plurality of charged particle beamlets and directing said plurality of charged particle beamlets onto said specimen. According to the disclosure, the illuminator comprises a multi-aperture lens plate having a plurality of apertures for defining the corresponding plurality of charged particle beamlets; as well as at least a first electrode for generating an electrical field at a surface of the multi-aperture lens plate. The apertures in said multi-aperture lens plate have a noncircular cross-sectional shape to correct for neighbouring aperture induced aberrations. This allows for decreased spot size, and with this imaging resolution of the device is increased.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 27, 2020
    Applicant: FEI Company
    Inventors: Ali Mohammadi-Gheidari, Erik René Kieft, Pieter Kruit
  • Patent number: 10679819
    Abstract: The invention relates to an aberration correcting device for correcting aberrations of focusing lenses in an electron microscope. The device comprises a first and a second electron mirror, each comprising an electron beam reflecting face. Between said mirrors an intermediate space is arranged. The intermediate space comprises an input side and an exit side. The first and second electron mirrors are arranged at opposite sides of the intermediate space, wherein the reflective face of the first and second mirror are arranged facing said intermediate space. The first mirror is arranged at the exit side and the second mirror is arranged at the input side of the intermediate space. In use, the first mirror receives the electron beam coming from the input side and reflects said beam via the intermediate space towards the second mirror. The second mirror receives the electron beam coming from the first mirror, and reflects the electron beam via the intermediate space towards the exit side.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: June 9, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventor: Pieter Kruit
  • Publication number: 20200035447
    Abstract: Disclosed is an apparatus and method for inspecting a sample. The apparatus includes: a sample holder, a multi beam charged particle generator for generating an array of primary charged particle beams, an electro-magnetic lens system for directing the array of primary charged particle beams into an array of separate focused primary charged particle beams on the sample, a multi-pixel photon detector arranged for detecting photons created by the focused primary charged particle beams when the primary charged particle beams impinge on the sample or after transmission of the primary charged particle beams through the sample, and an optical assembly for conveying photons created by at least two adjacent focused primary charged particle beams of the array of separate focused primary charged particle beams to distinct and/or separate pixels or groups of pixels of the multi-pixel photon detector.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Pieter KRUIT, Aernout ZONNEVYLLE, Yan REN
  • Patent number: 10504687
    Abstract: A multi-beam charged particle column for inspecting a surface of a sample includes a source for creating multiple primary charged particle beams which are directed towards the sample, an objective lens unit for focusing the primary charged particle beams on the sample, a detector for detecting signal charged particles from the sample, and a magnetic deflection unit arranged between the detector and the sample. The magnetic deflection unit includes a plurality of strips of a magnetic or ferromagnetic material. At least two strips of the plurality of strips are located at opposite sides of a trajectory of a primary charged particle beam and within a distance equal to a pitch of the trajectories of the primary charged particle beams at the magnetic deflection unit. The strips are configured to establish a magnetic field having field lines substantially perpendicular to the trajectories of the primary charged particle beams.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 10, 2019
    Assignees: TECHNISCHE UNIVERSITEIT DELFT, APPLIED MATERIALS ISRAEL, LTD.
    Inventors: Pieter Kruit, Ron Naftali
  • Patent number: 10453649
    Abstract: An apparatus for inspecting a sample includes a sample holder for holding the sample; a multi beam charged particle generator for generating an array of primary charged particle beams; an electro-magnetic lens system for directing the array of primary charged particle beams into an array of separate focused primary charged particle beams on the sample; a multi-pixel photon detector arranged for detecting photons created by the focused primary charged particle beams when the primary charged particle beams impinge on the sample or after transmission of said primary charged particle beams through the sample; and an optical assembly for conveying photons created by at least two adjacent focused primary charged particle beams of the array of separate focused primary charged particle beams to distinct and/or separate pixels or to distinct and/or separate groups of pixels of the multi-pixel photon detector.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 22, 2019
    Assignee: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Pieter Kruit, Aernout Christiaan Zonnevylle, Yan Ren
  • Patent number: 10453645
    Abstract: A method of inspecting a specimen with an array of primary charged particle beamlets in a charged particle beam device is described. The method includes generating a primary charged particle beam with a charged particle beam emitter; illuminating a multi-aperture lens plate with the primary charged particle beam to generate the array of primary charged particle beamlets; correcting a field curvature with at least two electrodes, wherein the at least two electrodes include aperture openings; directing the primary charged particle beamlets with a lens towards an objective lens; guiding the primary charged particle beamlets through a deflector array arranged within the lens; wherein the combined action of the lens and the deflector array directs the primary charged particle beamlets through a coma free point of the objective lens; and focusing the primary charged particle beamlets on separate locations on the specimen with the objective lens.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: October 22, 2019
    Assignees: APPLIED MATERIALS ISRAEL LTD., TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Jürgen Frosien, Pieter Kruit
  • Patent number: 10395887
    Abstract: Apparatus and method for inspecting a surface of a sample. The apparatus includes a multi-beam charged particle column comprising a source for creating multiple primary beams directed towards the sample, an objective lens for focusing the primary beams on the sample, an electron-photon converter unit having an array of electron to photon converter sections, each section is located next to a primary beam within a distance equal to a pitch of the primary beams at the electro-photon converter unit, a photon transport unit for transporting light from the electron to photon converter sections to a photo detector, and an electron collection unit for guiding secondary electrons created in the sample, towards the electron-photon converter unit. The electron collection unit is arranged to project secondary electrons created in the sample by one of said primary beams to at least one of the electron to photon converter sections.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: August 27, 2019
    Assignees: TECHNISCHE UNIVERSITEIT DELFT, APPLIED MATERIALS ISRAEL, LTD.
    Inventors: Pieter Kruit, Ron Naftali
  • Publication number: 20190259570
    Abstract: Apparatus and method for inspecting a surface of a sample. The apparatus includes a multi-beam charged particle column comprising a source for creating multiple primary beams directed towards the sample, an objective lens for focusing the primary beams on the sample, an electron-photon converter unit having an array of electron to photon converter sections, each section is located next to a primary beam within a distance equal to a pitch of the primary beams at the electro-photon converter unit, a photon transport unit for transporting light from the electron to photon converter sections to a photo detector, and an electron collection unit for guiding secondary electrons created in the sample, towards the electron-photon converter unit. The electron collection unit is arranged to project secondary electrons created in the sample by one of said primary beams to at least one of the electron to photon converter sections.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Inventors: Pieter KRUIT, Ron NAFTALI
  • Publication number: 20190259564
    Abstract: A multi-beam charged particle column for inspecting a surface of a sample includes a source for creating multiple primary charged particle beams which are directed towards the sample, an objective lens unit for focusing the primary charged particle beams on the sample, a detector for detecting signal charged particles from the sample, and a magnetic deflection unit arranged between the detector and the sample. The magnetic deflection unit includes a plurality of strips of a magnetic or ferromagnetic material. At least two strips of the plurality of strips are located at opposite sides of a trajectory of a primary charged particle beam and within a distance equal to a pitch of the trajectories of the primary charged particle beams at the magnetic deflection unit. The strips are configured to establish a magnetic field having field lines substantially perpendicular to the trajectories of the primary charged particle beams.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Inventors: Pieter KRUIT, Ron NAFTALI
  • Publication number: 20190228946
    Abstract: The invention relates to an aberration correcting device for correcting aberrations of focusing lenses in an electron microscope. The device comprises a first and a second electron mirror, each comprising an electron beam reflecting face. Between said mirrors an intermediate space is arranged. The intermediate space comprises an input side and an exit side. The first and second electron mirrors are arranged at opposite sides of the intermediate space, wherein the reflective face of the first and second mirror are arranged facing said intermediate space. The first mirror is arranged at the exit side and the second mirror is arranged at the input side of the intermediate space. In use, the first mirror receives the electron beam coming from the input side and reflects said beam via the intermediate space towards the second mirror. The second mirror receives the electron beam coming from the first mirror, and reflects the electron beam via the intermediate space towards the exit side.
    Type: Application
    Filed: July 21, 2017
    Publication date: July 25, 2019
    Inventor: Pieter KRUIT
  • Patent number: 10312052
    Abstract: Provided is an assembly for inspecting the surface of a sample. The assembly includes two or more multi-beam electron column units. Each unit has: a single thermal field emitter for emitting a diverging electron beam towards a beam splitter; wherein the beam splitter includes a first multi-aperture plate having multiple apertures for creating multiple primary electron beams; a collimator lens for collimating the diverging electron beam from the emitter; an objective lens unit for focusing said multiple primary electron beams on said sample; and a multi-sensor detector system for separately detecting the intensity of secondary electron beams created by each one of said focused primary electron beams on said sample. The two or more multi-beam electron column units are arranged adjacent to each other for inspecting different parts of the surface of the sample at the same time.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: June 4, 2019
    Assignee: TECHNISCHE UNIVERSITEIT DELFT
    Inventor: Pieter Kruit
  • Publication number: 20190096630
    Abstract: Disclosed is a device for, in combination with a stop having an aperture, generating charged particle beam pulses, an apparatus for inspecting a surface of a sample, and a method for inspecting a surface of a sample. The device includes a deflection unit which is arranged for positioning in or along a trajectory of a charged particle beam. The deflection unit is arranged for generating an electric field for deflecting said charged particle beam over the stop and across the aperture. The device also includes an electrical driving circuit for providing a periodic signal. The electrical driving circuit is connected to the manipulation unit via a photoconductive switch, wherein the photoconductive switch is arranged for: substantially insulating the deflection unit from the electrical driving circuit, and for conductively connecting the deflection unit to the electrical driving circuit only when said photoconductive switch is illuminated by a light beam.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 28, 2019
    Inventors: Pieter KRUIT, Izaak Gerrit Cornelis WEPPELMAN
  • Patent number: 10132753
    Abstract: The invention provides a method of determining a measure of a density of markers in a sample, and an apparatus arranged for performing said method. In particular said method comprising the steps of: irradiating an illumination region of the sample with light, wherein the markers present in the illumination region of the sample emit fluorescence light in response to the irradiation with light, detecting an intensity of the fluorescence light from a detection region of the sample, comprising at least a part of said the illumination region, irradiating an area within said detection region of the sample with a focused charged particle beam to deposit a dose of charged particles in said area, and determining a measure of the density of markers in said area using a change of the detected intensity of the fluorescence light as a function of the deposited dose of charged particles in said area.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: November 20, 2018
    Assignee: DELMIC B.V.
    Inventors: Jacob Pieter Hoogenboom, Pieter Kruit
  • Publication number: 20180158642
    Abstract: A method of inspecting a specimen with an array of primary charged particle beamlets in a charged particle beam device is described. The method includes generating a primary charged particle beam with a charged particle beam emitter; illuminating a multi-aperture lens plate with the primary charged particle beam to generate the array of primary charged particle beamlets; correcting a field curvature with at least two electrodes, wherein the at least two electrodes include aperture openings; directing the primary charged particle beamlets with a lens towards an objective lens; guiding the primary charged particle beamlets through a deflector array arranged within the lens; wherein the combined action of the lens and the deflector array directs the primary charged particle beamlets through a coma free point of the objective lens; and focusing the primary charged particle beamlets on separate locations on the specimen with the objective lens.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 7, 2018
    Inventors: Jürgen Frosien, Pieter Kruit
  • Patent number: 9922796
    Abstract: A method for inspecting a specimen with an array of primary charged particle beamlets in a charged particle beam device having an optical axis. The method includes generating a primary charged particle beam; illuminating a multi-aperture lens plate with the primary charged particle beam to generate the array of primary charged particle beamlets; and correcting a field curvature of the charged particle beam device with a first and a second field curvature correction electrode. The method further includes applying a voltage to the first and to the second field curvature correction electrode. At least one of the field strength provided by the first and the second field curvature correction electrode varies in a plane perpendicular to the optical axis of the charged particle beam device. The method further includes focusing the primary charged particle beamlets on separate locations on the specimen with an objective lens.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: March 20, 2018
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Jürgen Frosien, Pieter Kruit
  • Publication number: 20170243717
    Abstract: Provided is an assembly for inspecting the surface of a sample. The assembly includes two or more multi-beam electron column units. Each unit has: a single thermal field emitter for emitting a diverging electron beam towards a beam splitter; wherein the beam splitter includes a first multi-aperture plate having multiple apertures for creating multiple primary electron beams; a collimator lens for collimating the diverging electron beam from the emitter; an objective lens unit for focusing said multiple primary electron beams on said sample; and a multi-sensor detector system for separately detecting the intensity of secondary electron beams created by each one of said focused primary electron beams on said sample. The two or more multi-beam electron column units are arranged adjacent to each other for inspecting different parts of the surface of the sample at the same time.
    Type: Application
    Filed: September 3, 2015
    Publication date: August 24, 2017
    Inventor: Pieter KRUIT
  • Publication number: 20170221675
    Abstract: The invention relates to a method for inspecting a sample with an assembly comprising a scanning electron microscope (SEM) and a light microscope (LM). The assembly comprises a sample holder for holding the sample. The sample holder is arranged for inspecting the sample with both the SEM and the LM, preferably at the same time. The method comprising the steps of: capturing a LM image of the sample in its position for imaging with the SEM; determining a position and dimensions of a region of interest in or on the sample using the LM image; determining values to which the SEM parameters need to be set to image the sample at a desired resolution; and capturing a SEM image of the region of interest, preferably using the first electron beam exposure of said region of interest.
    Type: Application
    Filed: July 20, 2015
    Publication date: August 3, 2017
    Applicant: DELMIC B.V.
    Inventors: Jacob Pieter HOOGENBOOM, Nalan LIV HAMARAT, Pieter KRUIT
  • Patent number: 9715992
    Abstract: An apparatus for inspecting a sample, is equipped with a charged particle column for producing a focused beam of charged particles to observe or modify the sample, and an optical microscope to observe a region of interest on the sample as is observed by the charged particle beam or vice versa. The apparatus is accommodated with a processing unit adapted and equipped to represent an image as generated with the column and an image as generated with the microscope. The unit is further adapted to perform an alignment procedure mutually correlating a region of interest in one of the images, wherein the alignment procedure involves detecting a change in the optical image as caused by the charged particle beam.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: July 25, 2017
    Assignee: DELMIC B.V.
    Inventors: Jacob Pieter Hoogenboom, Pieter Kruit, Nalan Liv, Aernout Christiaan Zonnevylle
  • Patent number: RE48046
    Abstract: Lithography system, sensor and method for measuring properties of a massive amount of charged particle beams of a charged particle beam system, in particular a direct write lithography system, in which the charged particle beams are converted into light beams by using a converter element, using an array of light sensitive detectors such as diodes, CCD or CMOS devices, located in line with said converter element, for detecting said light beams, electronically reading out resulting signals from said detectors after exposure thereof by said light beams, utilizing said signals for determining values for one or more beam properties, thereby using an automated electronic calculator, and electronically adapting the charged particle system so as to correct for out of specification range values for all or a number of said charged particle beams, each for one or more properties, based on said calculated property values.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 9, 2020
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Pieter Kruit, Erwin Slot, Tijs Frans Teepen, Marco Jan-Jaco Wieland, Stijn Willem Herman Karel Steenbrink