Patents by Inventor Ping-Yin Liu

Ping-Yin Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8905293
    Abstract: A bond free of an anti-stiction layer and bonding method is disclosed. An exemplary method includes forming a first bonding layer; forming an interlayer over the first bonding layer; forming an anti-stiction layer over the interlayer; and forming a liquid from the first bonding layer and interlayer, such that the anti-stiction layer floats over the first bonding layer. A second bonding layer can be bonded to the first bonding layer while the anti-stiction layer floats over the first bonding layer, such that a bond between the first and second bonding layers is free of the anti-stiction layer.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Li-Cheng Chu, Hung-Hua Lin, Shang-Ying Tsai, Yuan-Chih Hsieh, Jung-Huei Peng, Lan-Lin Chao, Chia-Shiung Tsai, Chun-Wen Cheng
  • Publication number: 20140273347
    Abstract: Methods for forming an integrated device using CMOS processing with wafer bonding. In an embodiment, a method is disclosed that includes defining an integrated circuit function using a front-end substrate having one or more active devices and a back-end substrate having connections formed in metal layers in dielectric material, wherein the back-end substrate is free from active devices; manufacturing the front-end substrate in a first semiconductor process; more or less simultaneously, manufacturing the back-end substrate in a second semiconductor process; physically contacting bonding surfaces of the front-end substrate and the back-end substrate; and performing wafer bonding to form bonds between the front-end and back-end substrates to form an integrated circuit. Additional methods are disclosed.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pin-Nan Tseng, Chia-Shiung Tsai, Ping-Yin Liu
  • Publication number: 20140264948
    Abstract: A package component includes a surface dielectric layer including a planar top surface, a metal pad in the surface dielectric layer and including a second planar top surface level with the planar top surface, and an air trench on a side of the metal pad. The sidewall of the metal pad is exposed to the air trench.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bruce C.S. Chou, Chen-Jong Wang, Ping-Yin Liu, Jung-Kuo Tu, Tsung-Te Chou, Xin-Hua Huang, Xin-Chung Kuang, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20140256087
    Abstract: A method includes performing a hybrid bonding to bond a first package component to a second package component, so that a bonded pair is formed. In the bonded pair, first metal pads in the first package component are bonded to second metal pads in the second package component, and a first surface dielectric layer at a surface of the first package component is bonded to a second surface dielectric layer at a surface of the second package component. After the hybrid bonding, a thermal compressive annealing is performed on the bonded pair.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Chih-Hui Huang, Lan-Lin Chao, Yeur-Luen Tu, Yan-Chih Lu, Jhy-Jyi Sze, Chia-Shiung Tsai
  • Publication number: 20140248730
    Abstract: The present disclosure provides a method including providing a first substrate; and forming a microelectromechanical system (MEMS) device on a first surface of the first substrate. A bond pad is formed on at least one bonding site on the first surface of the first substrate. The bonding site is recessed from the first surface. Thus, a top surface of the bond pad may lie below the plane of the top surface of the substrate. A device with recessed connective element(s) (e.g., bond pad) is also described. In further embodiments, a protective layer is formed on the recessed connective element during dicing of a substrate.
    Type: Application
    Filed: October 18, 2013
    Publication date: September 4, 2014
    Inventors: Hsin-Ting Huang, Jung-Huei Peng, Shang-Ying Tsai, Yao-Te Huang, Ming-Tung Wu, Ping-Yin Liu, Xin-Hua Huang, Yuan-Chih Hsieh
  • Patent number: 8809123
    Abstract: Three dimensional integrated circuit (3DIC) structures and hybrid bonding methods for semiconductor wafers are disclosed. A 3DIC structure includes a first semiconductor device having first conductive pads disposed within a first insulating material on a top surface thereof, the first conductive pads having a first recess on a top surface thereof. The 3DIC structure includes a second semiconductor device having second conductive pads disposed within a second insulating material on a top surface thereof coupled to the first semiconductor device, the second conductive pads having a second recess on a top surface thereof. A sealing layer is disposed between the first conductive pads and the second conductive pads in the first recess and the second recess. The sealing layer bonds the first conductive pads to the second conductive pads. The first insulating material is bonded to the second insulating material.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 8802538
    Abstract: Methods for hybrid wafer bonding. In an embodiment, a method is disclosed that includes forming a metal pad layer in a dielectric layer over at least two semiconductor substrates; performing chemical mechanical polishing on the semiconductor substrates to expose a surface of the metal pad layer and planarize the dielectric layer to form a bonding surface on each semiconductor substrate; performing an oxidation process on the at least two semiconductor substrates to oxidize the metal pad layer to form a metal oxide; performing an etch to remove the metal oxide, recessing the surface of the metal pad layer from the bonding surface of the dielectric layer of each of the at least two semiconductor substrates; physically contacting the bonding surfaces of the at least two semiconductor substrates; and performing a thermal anneal to form bonds between the metal pads of the semiconductor substrates. Additional methods are disclosed.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: August 12, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Jen-Cheng Liu, Xiaomeng Chen, Xin-Hua Huang, Hung-Hua Lin, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 8790946
    Abstract: A method includes bonding a first bond layer to a second bond layer through eutectic bonding. The step of bonding includes heating the first bond layer and the second bond layer to a temperature higher than a eutectic temperature of the first bond layer and the second bond layer, and performing a pumping cycle. The pumping cycle includes applying a first force to press the first bond layer and the second bond layer against each other. After the step of applying the first force, a second force lower than the first force is applied to press the first bond layer and the second bond layer against each other. After the step of applying the second force, a third force higher than the second force is applied to press the first bond layer and the second bond layer against each other.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: July 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Li-Cheng Chu, Yuan-Chih Hsieh, Lan-Lin Chao, Chun-Wen Cheng, Chia-Shiung Tsai
  • Patent number: 8735260
    Abstract: The present disclosure provide a method of manufacturing a microelectronic device. The method includes forming a bonding pad on a first substrate; forming wiring pads on the first substrate; forming a protection material layer on the first substrate, on sidewalls and top surfaces of the wiring pads, and on sidewalls of the bonding pad, such that a top surface of the bonding pad is at least partially exposed; bonding the first substrate to a second substrate through the bonding pad; opening the second substrate to expose the wiring pads; and removing the protection material layer.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Ying Tsai, Jung-Huei Peng, Hsin-Ting Huang, Hung-Hua Lin, Ming-Tung Wu, Ping-Yin Liu, Yao-Te Huang, Yuan-Chih Hsieh
  • Patent number: 8728845
    Abstract: The present disclosure provides various methods for removing an anti-stiction layer. An exemplary method includes forming an anti-stiction layer over a substrate, including over a first substrate region of a first material and a second substrate region of a second material, wherein the second material is different than the first material; and selectively removing the anti-stiction layer from the second substrate region of the second material without using a mask.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 20, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Lin, Ping-Yin Liu, Lan-Lin Chao, Jung-Huei Peng, Chia-Shiung Tsai
  • Publication number: 20140117546
    Abstract: The embodiments of diffusion barrier layer described above provide mechanisms for forming a copper diffusion barrier layer to prevent device degradation for hybrid bonding of wafers. The diffusion barrier layer(s) encircles the copper-containing conductive pads used for hybrid bonding. The diffusion barrier layer can be on one of the two bonding wafers or on both bonding wafers.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin LIU, Szu-Ying CHEN, Chen-Jong WANG, Chih-Hui HUANG, Xin-Hua HUANG, Lan-Lin CHAO, Yeur-Luen TU, Chia-Chiung TSAI, Xiaomeng CHEN
  • Publication number: 20140113398
    Abstract: A backside illuminated image sensor comprises a photodiode and a first transistor located in a first chip, wherein the first transistor is electrically coupled to the photodiode. The backside illuminated image sensor further comprises a second transistor formed in a second chip and a plurality of logic circuits formed in a third chip, wherein the second chip is stacked on the first chip and the third chip is stacked on the second chip. The logic circuit, the second transistor and the first transistor are coupled to each other through a plurality of boding pads and through vias.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Jui Wang, Szu-Ying Chen, Jen-Cheng Liu, Dun-Nian Yaung, Ping-Yin Liu, Lan-Lin Chao
  • Publication number: 20140054779
    Abstract: The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a via structure includes a via having via sidewall surfaces defined by a semiconductor substrate. The via sidewall surfaces have a first portion and a second portion. A conductive layer is disposed in the via on the first portion of the via sidewall surfaces, and a dielectric layer is disposed on the second portion of the via sidewall surfaces. The dielectric layer is disposed between the second portion of the via sidewall surfaces and the conductive layer. In an example, the dielectric layer is an oxide layer.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 27, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Chih Hsieh, Li-Cheng Chu, Ming-Tung Wu, Ping-Yin Liu, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20140051336
    Abstract: A grinding wheel for wafer edge trimming includes a head having an open side and an abrasive end bonded around an edge of the open side of the head. The abrasive end is arranged to have multiple simultaneous contacts around a wafer edge during the wafer edge trimming.
    Type: Application
    Filed: September 28, 2012
    Publication date: February 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xin-Hua HUANG, Ping-Yin LIU, Yuan-Chih HSIEH, Lan-Lin CHAO, Chia-Shiung TSAI
  • Publication number: 20140020818
    Abstract: Systems and methods of separating bonded wafers are disclosed. In one embodiment, a system for separating bonded wafers includes a support for the bonded wafers and means for applying a sheer force to the bonded wafers. The system also includes means for applying a vacuum to the bonded wafers.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 8629524
    Abstract: A backside illuminated image sensor comprises a photodiode and a first transistor located in a first chip, wherein the first transistor is electrically coupled to the photodiode. The backside illuminated image sensor further comprises a second transistor formed in a second chip and a plurality of logic circuits formed in a third chip, wherein the second chip is stacked on the first chip and the third chip is stacked on the second chip. The logic circuit, the second transistor and the first transistor are coupled to each other through a plurality of boding pads and through vias.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Jui Wang, Szu-Ying Chen, Jen-Cheng Liu, Dun-Nian Yaung, Ping-Yin Liu, Lan-Lin Chao
  • Publication number: 20140011324
    Abstract: Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Shih-Wei Lin, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20130334638
    Abstract: A backside illuminated image sensor comprises a photodiode and a first transistor located in a first substrate, wherein the first transistor is electrically coupled to the photodiode. The backside illuminated image sensor further comprises a plurality of logic circuits formed in a second substrate, wherein the second substrate is stacked on the first substrate and the logic circuit are coupled to the first transistor through a plurality of bonding pads.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ying Chen, Tzu-Jui Wang, Jen-Cheng Liu, Dun-Nian Yaung, Ping-Yin Liu, Lan-Lin Chao
  • Publication number: 20130320556
    Abstract: Three dimensional integrated circuit (3DIC) structures and hybrid bonding methods for semiconductor wafers are disclosed. A 3DIC structure includes a first semiconductor device having first conductive pads disposed within a first insulating material on a top surface thereof, the first conductive pads having a first recess on a top surface thereof. The 3DIC structure includes a second semiconductor device having second conductive pads disposed within a second insulating material on a top surface thereof coupled to the first semiconductor device, the second conductive pads having a second recess on a top surface thereof. A sealing layer is disposed between the first conductive pads and the second conductive pads in the first recess and the second recess. The sealing layer bonds the first conductive pads to the second conductive pads. The first insulating material is bonded to the second insulating material.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 8580594
    Abstract: The present disclosure provides a method including providing a first substrate; and forming a microelectromechanical system (MEMS) device on a first surface of the first substrate. A bond pad is formed on at least one bonding site on the first surface of the first substrate. The bonding site is recessed from the first surface. Thus, a top surface of the bond pad may lie below the plane of the top surface of the substrate. A device with recessed connective element(s) (e.g., bond pad) is also described. In further embodiments, a protective layer is formed on the recessed connective element during dicing of a substrate.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Ting Huang, Jung-Huei Peng, Shang-Ying Tsai, Yao-Te Huang, Ming-Tung Wu, Ping-Yin Liu, Xin-Hua Huang, Yuan-Chih Hsieh