Patents by Inventor Ping-Yin Liu

Ping-Yin Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160163684
    Abstract: A package component includes a surface dielectric layer including a planar top surface, a metal pad in the surface dielectric layer and including a second planar top surface level with the planar top surface, and an air trench on a side of the metal pad. The sidewall of the metal pad is exposed to the air trench.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Inventors: Bruce C.S. Chou, Chen-Jong Wang, Ping-Yin Liu, Jung-Kuo Tu, Tsung-Te Chou, Xin-Hua Huang, Hsun-Chung Kuang, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160155665
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9331032
    Abstract: A method includes performing a hybrid bonding to bond a first package component to a second package component, so that a bonded pair is formed. In the bonded pair, first metal pads in the first package component are bonded to second metal pads in the second package component, and a first surface dielectric layer at a surface of the first package component is bonded to a second surface dielectric layer at a surface of the second package component. After the hybrid bonding, a thermal compressive annealing is performed on the bonded pair.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 3, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Chih-Hui Huang, Lan-Lin Chao, Yeur-Luen Tu, Yan-Chih Lu, Jhy-Jyi Sze, Chia-Shiung Tsai
  • Publication number: 20160111316
    Abstract: A method includes receiving a wafer stack having at least two wafers bonded together. At least one blade is inserted between a first wafer of the at least two wafers and a second wafer of the at least two wafers. The blade has a channel configured to inject air or fluid. The first wafer is debonded from the second wafer using the at least one blade. In another embodiment, a detacher having a convex bottom surface is attached to the wafer stack. The first wafer is debonded from the second wafer using the detacher.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 9293445
    Abstract: A device is described in one embodiment that includes a micro-electro-mechanical systems (MEMS) device disposed on a first substrate and a semiconductor device disposed on a second substrate. A bond electrically connects the MEMS device and the semiconductor device. The bond includes an interface between a first bonding layer including silicon on the first substrate and a second bonding layer including aluminum on the second substrate. The physical interface between the aluminum and silicon (e.g., amorphous silicon) can provide an electrical connection.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: March 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Li-Chen Chu, Hung-Hua Lin, H. T. Huang, Jung-Huei Peng, Yuan-Chih Hsieh, Lan-Lin, Chun-Wen Cheng, Chia-Shiung Tsai
  • Patent number: 9293303
    Abstract: An embodiment low contamination chamber includes a gas inlet, an adjustable top electrode, an adjustable bottom electrode, and an outlet. The chamber is configured to adjust a distance between the adjustable top and bottom electrodes in accordance with a desired density of plasma disposed between the top electrode and the bottom electrode.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: March 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Lee-Chuan Tseng, Lan-Lin Chao
  • Patent number: 9257399
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20150357296
    Abstract: A method of forming a hybrid bonding structure includes depositing an etch stop layer over surface of a substrate, wherein the substrate comprises a conductive structure, and the etch stop layer contacts the conductive structure. The method further includes depositing a dielectric material over the etch stop layer. The method further includes depositing a first diffusion barrier layer over the dielectric material. The method further includes forming an opening extending through the etch stop layer, the dielectric material and the diffusion barrier layer. The method further includes lining the opening with a second diffusion barrier layer. The method further includes depositing a conductive pad on the second diffusion barrier layer in the opening, wherein a surface of the first diffusion barrier layer is aligned with a surface of the conductive pad.
    Type: Application
    Filed: August 20, 2015
    Publication date: December 10, 2015
    Inventors: Ping-Yin LIU, Szu-Ying CHEN, Chen-Jong WANG, Chih-Hui HUANG, Xin-Hua HUANG, Lan-Lin CHAO, Yeur-Luen TU, Chia-Shiung TSAI, Xiaomeng CHEN
  • Publication number: 20150357226
    Abstract: A system for and a method of bonding a first wafer to a second wafer are provided. A second wafer chuck has a second surface, a profile of the second surface being adjustable by a profile control layer. The first wafer is placed on a first surface of a first wafer chuck, and the second wafer is placed on the second surface of the second wafer chuck. The first wafer and the second wafer are warped prior to bonding to form a first warped wafer and a second warped wafer, respectively. The first warped wafer is bonded to the second warped wafer.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 10, 2015
    Inventors: Ping-Yin Liu, Yen-Chang Chu, Xin-Hua Huang, Lan-Lin Chao, Yeur-Luen Tu, Ru-Liang Lee
  • Publication number: 20150332968
    Abstract: The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a via structure includes a via having via sidewall surfaces defined by a semiconductor substrate. The via sidewall surfaces have a first portion and a second portion. A conductive layer is disposed in the via on the first portion of the via sidewall surfaces, and a dielectric layer is disposed on the second portion of the via sidewall surfaces. The dielectric layer is disposed between the second portion of the via sidewall surfaces and the conductive layer. In an example, the dielectric layer is an oxide layer.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Inventors: Yuan-Chih Hsieh, Li-Cheng Chu, Ming-Tung Wu, Ping-Yin Liu, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20150332939
    Abstract: An apparatus for cleaning a wafer includes a wafer station configured to hold the wafer, and a first and a second dispensing system. The first dispensing system includes a first swivel arm, and a first nozzle on the first swivel arm, wherein the first swivel arm is configured to move the first nozzle over and aside of the wafer. The first dispensing system includes first storage tank connected to the first nozzle, with the first nozzle configured to dispense a solution in the first storage tank. The second dispensing system includes a second swivel arm, and a second nozzle on the second swivel arm, wherein the second swivel arm is configured to move the second nozzle over and aside of the wafer. The second dispensing system includes a second storage tank connected to the second nozzle, with the second nozzle configured to dispense a solution in the second storage tank.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 19, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Lan-Lin Chao
  • Publication number: 20150287694
    Abstract: Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
    Type: Application
    Filed: May 29, 2015
    Publication date: October 8, 2015
    Inventors: Ping-Yin Liu, Shih-Wei Lin, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20150266722
    Abstract: A method includes forming a MEMS device, forming a bond layer adjacent the MEMS device, and forming a protection layer over the bond layer.
    Type: Application
    Filed: June 5, 2015
    Publication date: September 24, 2015
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Hsin-Ting Huang, Yuan-Chih Hsieh, Jung-Huei Peng, Lan-Lin Chao, Chia-Shiung Tsai, Chun-Wen Cheng
  • Patent number: 9142517
    Abstract: The embodiments of diffusion barrier layer described above provide mechanisms for forming a copper diffusion barrier layer to prevent device degradation for hybrid bonding of wafers. The diffusion barrier layer(s) encircles the copper-containing conductive pads used for hybrid bonding. The diffusion barrier layer can be on one of the two bonding wafers or on both bonding wafers.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 22, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Szu-Ying Chen, Chen-Jong Wang, Chih-Hui Huang, Xin-Hua Huang, Lan-Lin Chao, Yeur-Luen Tu, Chia-Chiung Tsai, Xiaomeng Chen
  • Patent number: 9136302
    Abstract: A backside illuminated image sensor comprises a photodiode and a first transistor located in a first chip, wherein the first transistor is electrically coupled to the photodiode. The backside illuminated image sensor further comprises a second transistor formed in a second chip and a plurality of logic circuits formed in a third chip, wherein the second chip is stacked on the first chip and the third chip is stacked on the second chip. The logic circuit, the second transistor and the first transistor are coupled to each other through a plurality of boding pads and through vias.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Jui Wang, Szu-Ying Chen, Jen-Cheng Liu, Dun-Nian Yaung, Ping-Yin Liu, Lan-Lin Chao
  • Publication number: 20150243611
    Abstract: A semiconductor device and a method of fabricating the same are introduced. In an embodiment, one or more passivation layers are formed over a first substrate. Recesses are formed in the passivation layers and one or more conductive pads are formed in the recesses. One or more barrier layers are formed between the passivation layers and the conductive pads. The conductive pads of the first substrate are aligned to the conductive pads of a second substrate and are bonded using a direct bonding method.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Inventors: Ping-Yin Liu, Hsun-Chung Kuang, Cheng-Tai Hsiao, Xin-Hua Huang, Lan-Lin Chao
  • Publication number: 20150233698
    Abstract: Presented herein is a device comprising a common node disposed in a first wafer a test node disposed in a first wafer and having a plurality of test pads exposed at a first surface of the first wafer. The test node also has test node lines connected to the test pads and that are separated by a first spacing and extend to a second surface of the first wafer. A comb is disposed in a second wafer and has a plurality of comb lines having a second spacing different from the first spacing. Each of the comb lines has a first surface exposed at a first side of the second wafer. The comb lines provide an indication of an alignment of the first wafer and second wafer by a number or arrangement of connections made by the plurality of comb lines between the test node lines and the common node.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Lan-Lin Chao
  • Patent number: 9099476
    Abstract: The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a via structure includes a via having via sidewall surfaces defined by a semiconductor substrate. The via sidewall surfaces have a first portion and a second portion. A conductive layer is disposed in the via on the first portion of the via sidewall surfaces, and a dielectric layer is disposed on the second portion of the via sidewall surfaces. The dielectric layer is disposed between the second portion of the via sidewall surfaces and the conductive layer. In an example, the dielectric layer is an oxide layer.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 4, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Chih Hsieh, Li-Cheng Chu, Ming-Tung Wu, Ping-Yin Liu, Lan-Lin Chao, Chia-Shiung Tsai
  • Publication number: 20150175407
    Abstract: A micro electromechanical system (MEMS) device includes a MEMS section attached to a substrate, and a cap bonded to a first surface of the substrate. The MEMS device further includes a carrier bonded to a second surface of the substrate opposite the first surface, wherein the carrier is free of active devices, and the cap and the carrier define a vacuum region surrounding the MEMS section. The MEMS device further includes a bond pad on a surface of the carrier opposite the MEMS section, wherein the bond pad is electrically connected to the MEMS section.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-wen CHENG, Hung-Chia TSAI, Lan-Lin CHAO, Yuan-Chih HSIEH, Ping-Yin LIU
  • Patent number: 9054121
    Abstract: A method includes forming a MEMS device, forming a bond layer adjacent the MEMS device, and forming a protection layer over the bond layer. The steps of forming the bond layer and the protection layer include in-situ deposition of the bond layer and the protection layer.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: June 9, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Hsin-Ting Huang, Yuan-Chih Hsieh, Jung-Huei Peng, Lan-Lin Chao, Chia-Shiung Tsai, Chun-Wen Cheng