Patents by Inventor Po-Chun Yeh
Po-Chun Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8981373Abstract: A white LED is provided. The white LED includes a P-type layer, a tunneling structure, an N-type layer, an N-type electrode, and a P-type electrode. The tunneling structure is disposed over the P-type layer. The tunneling structure includes a first barrier layer, an active layer and a second barrier layer. The first barrier layer includes a first metal oxide layer. The active layer includes a second metal oxide layer. The second barrier layer includes a third metal oxide layer. The N-type layer is disposed over the tunneling structure. The N-type electrode and the P-type electrode are respectively contacted with the N-type layer and the P-type layer. An energy gap of the second metal oxide layer is lower than an energy gap of the first metal oxide layer and is lower than an energy gap of the third metal oxide layer.Type: GrantFiled: January 2, 2014Date of Patent: March 17, 2015Assignee: Opto Tech CorporationInventors: Lung-Han Peng, Yao-Te Wang, Po-Chun Yeh, Po-Ting Lee
-
Patent number: 8871546Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a method may comprise: forming a first III-nitride layer with a first low bandgap energy on a first surface of a substrate; forming a second III-nitride layer with a first high bandgap energy on the first III-nitride layer; transforming portions of the first III-nitride layer into a plurality of III-oxide stripes by photo-enhanced wet oxidation; forming a plurality of III-nitride nanowires with a second low bandgap energy on the second III-nitride layer between the III-oxide stripes; and selectively transforming at least some of the III-nitride nanowires into III-oxide nanowires by selective photo-enhanced oxidation.Type: GrantFiled: January 21, 2014Date of Patent: October 28, 2014Assignee: Opto Tech CorporationInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Publication number: 20140252308Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a method may comprise: forming a first III-nitride layer with a first low bandgap energy on a first surface of a substrate; forming a second III-nitride layer with a first high bandgap energy on the first III-nitride layer; transforming portions of the first III-nitride layer into a plurality of III-oxide stripes by photo-enhanced wet oxidation; forming a plurality of III-nitride nanowires with a second low bandgap energy on the second III-nitride layer between the III-oxide stripes; and selectively transforming at least some of the III-nitride nanowires into III-oxide nanowires by selective photo-enhanced oxidation.Type: ApplicationFiled: March 7, 2013Publication date: September 11, 2014Applicant: OPTO TECH CORPORATIONInventors: LUNG-HAN PENG, JENG-WEI YU, PO-CHUN YEH
-
Patent number: 8809832Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a method may comprise: forming a first III-nitride layer with a first low bandgap energy on a first surface of a substrate; forming a second III-nitride layer with a first high bandgap energy on the first III-nitride layer; transforming portions of the first III-nitride layer into a plurality of III-oxide stripes by photo-enhanced wet oxidation; forming a plurality of III-nitride nanowires with a second low bandgap energy on the second III-nitride layer between the III-oxide stripes; and selectively transforming at least some of the III-nitride nanowires into III-oxide nanowires by selective photo-enhanced oxidation.Type: GrantFiled: March 7, 2013Date of Patent: August 19, 2014Assignee: Opto Tech CorporationInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Publication number: 20140131750Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a method may comprise: forming a first III-nitride layer with a first low bandgap energy on a first surface of a substrate; forming a second III-nitride layer with a first high bandgap energy on the first III-nitride layer; transforming portions of the first III-nitride layer into a plurality of III-oxide stripes by photo-enhanced wet oxidation; forming a plurality of III-nitride nanowires with a second low bandgap energy on the second III-nitride layer between the III-oxide stripes; and selectively transforming at least some of the III-nitride nanowires into III-oxide nanowires by selective photo-enhanced oxidation.Type: ApplicationFiled: January 21, 2014Publication date: May 15, 2014Applicant: OPTO TECH CORPORATIONInventors: LUNG-HAN PENG, JENG-WEI YU, PO-CHUN YEH
-
Patent number: 8679883Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a semiconductor structure may comprise: a first substrate structure; a III-nitride structure bonded with the first substrate structure; a plurality of air gaps formed between the first substrate structure and the III-nitride structure; and a III-oxide layer formed on surfaces around the air gaps, wherein a portion of the III-nitride structure including surfaces around the air gaps is transformed into the III-oxide layer by a selective photo-enhanced wet oxidation, and the III-oxide layer is formed between an untransformed portion of the III-nitride structure and the first substrate structure.Type: GrantFiled: April 9, 2013Date of Patent: March 25, 2014Assignee: Opto Tech CorporationInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Publication number: 20140043226Abstract: A portable device and associated control method are provided. The portable device includes a foldable display panel. The control method includes steps of: detecting a folding operation is applied to the display panel; retrieving at least one folding signal; converting a display region of the display panel from an original size to a folded size according to the at least one folding signal; and the display panel displaying an image according to the converted display region. The display panel selects a corresponding folding coordinate system according to the converted display region.Type: ApplicationFiled: July 9, 2013Publication date: February 13, 2014Inventors: Wei-Yen Lee, Po-Chun Yeh, Heng-Yin Chen
-
Patent number: 8567893Abstract: An embodiment of a print signal generation system is provided. The system comprises a sensor, a divisor processing unit, a reference signal generator, and a print trigger signal generator. The sensor detects a first offset of a first location of a medium being printed. The divisor processing unit generates a first divisor according to the first offset and a predetermined divisor. The reference signal generator generates a reference signal. The print trigger signal generator generates a print trigger signal according to the first divisor and the reference signal.Type: GrantFiled: January 21, 2010Date of Patent: October 29, 2013Assignee: Industrial Technology Research InstituteInventors: Po-Chun Yeh, Chia-Ming Chang, Hung-Pin Shih, Tsu-Min Liu
-
Publication number: 20130258293Abstract: An optical phase modulation module and a projector comprising the same are provided. The optical phase modulation module comprises a transparent thin film with an electro-optic effect, a plurality of first upper electrodes, a plurality of second upper electrodes and a plurality of lower electrodes. The transparent thin film with the electro-optic effect has a top surface and a bottom surface. The first upper electrodes are formed on the top surface. The second upper electrodes are formed on the top surface and arranged alternately with the first upper electrodes. The lower electrodes are formed on the bottom surface. A first voltage difference exists between the first upper electrodes and the bottom electrodes, while a second voltage difference exists between the second upper electrodes and the bottom electrodes. Two different electric fields are produced within the transparent thin film with the electro-optic effect by the first voltage difference and the second voltage difference respectively.Type: ApplicationFiled: March 13, 2013Publication date: October 3, 2013Applicant: Touch Micro-System Technology Corp.Inventors: Lung-Han Peng, Chih-Ming Lai, Hoang-Yan Lin, Yung-Ming Lin, Po-Chun Yeh, Yan-Shuo Chang, Juei-Hung Hung
-
Publication number: 20130228807Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a semiconductor structure may comprise: a first substrate structure; a III-nitride structure bonded with the first substrate structure; a plurality of air gaps formed between the first substrate structure and the III-nitride structure; and a III-oxide layer formed on surfaces around the air gaps, wherein a portion of the III-nitride structure including surfaces around the air gaps is transformed into the III-oxide layer by a selective photo-enhanced wet oxidation, and the III-oxide layer is formed between an untransformed portion of the III-nitride structure and the first substrate structure.Type: ApplicationFiled: April 9, 2013Publication date: September 5, 2013Applicant: OPTO TECH CORPORATIONInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Patent number: 8487325Abstract: A light emitting diode includes a substrate, a plurality of pillar structures, a filler structure, a transparent conductive layer, a first electrode, and a second electrode. These pillar structures are formed on the substrate. Each of the pillar structures includes a first type semiconductor layer, an active layer, and a second type semiconductor layer. The first type semiconductor layers are formed on the substrate. The pillar structures are electrically connected with each other through the first type semiconductor layers. The filler structure is formed between the pillar structures. The filler structure and the second type semiconductor layers of the pillar structures are covered with the transparent conductive layer. The first electrode is in contact with the transparent conductive layer. The second electrode is in contact with the first type semiconductor layer.Type: GrantFiled: January 17, 2012Date of Patent: July 16, 2013Assignee: Opto Tech CorporationInventors: Chen-Yen Lin, Yung-Ming Lin, Po-Chun Yeh, Jeng-Wei Yu, Chih-Ming Lai, Lung-Han Peng
-
Patent number: 8481353Abstract: Various embodiments of the present disclosure pertain to separating nitride films from growth substrates by selective photo-enhanced wet oxidation. In one aspect, a method may transform a portion of a III-nitride structure that bonds with a first substrate structure into a III-oxide layer by selective photo-enhanced wet oxidation. The method may further separate the first substrate structure from the III-nitride structure.Type: GrantFiled: April 14, 2011Date of Patent: July 9, 2013Assignee: Opto Tech CorporationInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Publication number: 20130162546Abstract: A flexible display and a controlling method thereof are provided. The flexible display includes a plurality of pressure sensors, a display unit and a processing unit, wherein the processing unit is connected to the pressure sensors and the display unit. The processing unit obtains pressure values from each of the pressure sensors within a time unit and generates a pressure area and a pressure variance according to the pressure values from each of the pressure sensors. The processing unit further determines a display mode of the display unit according to the pressure area and the pressure variance. Therefore, the flexible display is capable of providing several kinds of display mode only based on the equipped pressure sensors.Type: ApplicationFiled: March 30, 2012Publication date: June 27, 2013Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Po-Chun Yeh, Heng-Yin Chen, Yung-Hsiang Chiu, Wei-Yen Lee
-
Patent number: 8409892Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a method may comprise: forming a first III-nitride layer with a first low bandgap energy on a first surface of a substrate; forming a second III-nitride layer with a first high bandgap energy on the first III-nitride layer; transforming portions of the first III-nitride layer into a plurality of III-oxide stripes by photo-enhanced wet oxidation; forming a plurality of III-nitride nanowires with a second low bandgap energy on the second III-nitride layer between the III-oxide stripes; and selectively transforming at least some of the III-nitride nanowires into III-oxide nanowires by selective photo-enhanced oxidation.Type: GrantFiled: April 14, 2011Date of Patent: April 2, 2013Assignee: Opto Tech CorporationInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Publication number: 20120264246Abstract: Various embodiments of the present disclosure pertain to selective photo-enhanced wet oxidation for nitride layer regrowth on substrates. In one aspect, a method may comprise: forming a first III-nitride layer with a first low bandgap energy on a first surface of a substrate; forming a second III-nitride layer with a first high bandgap energy on the first III-nitride layer; transforming portions of the first III-nitride layer into a plurality of III-oxide stripes by photo-enhanced wet oxidation; forming a plurality of III-nitride nanowires with a second low bandgap energy on the second III-nitride layer between the III-oxide stripes; and selectively transforming at least some of the III-nitride nanowires into III-oxide nanowires by selective photo-enhanced oxidation.Type: ApplicationFiled: April 14, 2011Publication date: October 18, 2012Applicant: OPTO TECH CORPORATIONInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Publication number: 20120264247Abstract: Various embodiments of the present disclosure pertain to separating nitride films from growth substrates by selective photo-enhanced wet oxidation. In one aspect, a method may transform a portion of a III-nitride structure that bonds with a first substrate structure into a III-oxide layer by selective photo-enhanced wet oxidation. The method may further separate the first substrate structure from the III-nitride structure.Type: ApplicationFiled: April 14, 2011Publication date: October 18, 2012Applicant: OPTO TECH CORPORATIONInventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
-
Publication number: 20120228655Abstract: A light emitting diode includes a substrate, a plurality of pillar structures, a filler structure, a transparent conductive layer, a first electrode, and a second electrode. These pillar structures are formed on the substrate. Each of the pillar structures includes a first type semiconductor layer, an active layer, and a second type semiconductor layer. The first type semiconductor layers are formed on the substrate. The pillar structures are electrically connected with each other through the first type semiconductor layers. The filler structure is formed between the pillar structures. The filler structure and the second type semiconductor layers of the pillar structures are covered with the transparent conductive layer. The first electrode is in contact with the transparent conductive layer. The second electrode is in contact with the first type semiconductor layer.Type: ApplicationFiled: January 17, 2012Publication date: September 13, 2012Applicant: OPTO TECH CORPORATIONInventors: Chen-Yen Lin, Yung-Ming Lin, Po-Chun Yeh, Jeng-Wei Yu, Chih-Ming Lai, Lung-Han Peng
-
Publication number: 20120162190Abstract: An apparatus and a method for driving multi-stable display panel are provided. The method includes selecting a plurality of target scan lines from a plurality of scan lines of the multi-stable display panel; driving the target scan lines during a line-scanning period; and providing a first voltage level to other scan lines besides the target scan lines during the line-scanning period. Wherein, the line-scanning period includes a plurality of time slots. The target scan lines are respectively provided with a third voltage level during at least a corresponding time slot of the time slots, and are provided with the first voltage level during other time slots besides the corresponding time slot. A data line of the multi-stable display panel is correspondingly provided with a second voltage level or a fourth voltage level in the time slots.Type: ApplicationFiled: March 5, 2011Publication date: June 28, 2012Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Po-Chun Yeh, Heng-Yin Chen, Cheng-Wei Sun, Wei-Yen Lee
-
Publication number: 20100225686Abstract: An embodiment of a print signal generation system is provided. The system comprises a sensor, a divisor processing unit, a reference signal generator, and a print trigger signal generator. The sensor detects a first offset of a first location of a medium being printed. The divisor processing unit generates a first divisor according to the first offset and a predetermined divisor. The reference signal generator generates a reference signal. The print trigger signal generator generates a print trigger signal according to the first divisor and the reference signal.Type: ApplicationFiled: January 21, 2010Publication date: September 9, 2010Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Po-Chun Yeh, Chia-Ming Chang, Hung-Pin Shih, Tsu-Min Liu