Patents by Inventor Po-Kang Wang

Po-Kang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100232050
    Abstract: A slider mounted TAMR (Thermal Assisted Magnetic Recording), DFH (Dynamic Flying Height) type read/write head using optical-laser generated surface plasmons in a small antenna to locally heat a magnetic medium, uses the same optical laser at low power to pre-heat the antenna. Maintaining the antenna at this pre-heated temperature, approximately 50% of its highest temperature during write operations, allows the DFH mechanism sufficient time to compensate for the thermal protrusion of the antenna at that lower temperature, so that thermal protrusion transients are significantly reduced when a writing operation occurs and full laser power is applied. The time constant for antenna protrusion is less than the time constant for DFH fly height compensation, so, without pre-heating, the thermal protrusion of the antenna due to absorption of optical radiation cannot be compensated by the DFH effect.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 16, 2010
    Inventors: Erhard Schreck, Kowang Liu, Kouji Shimazawa, Po-Kang Wang
  • Publication number: 20100191896
    Abstract: Systems and methods for a SSD controller enabling data transfer between a host and flash memories have been achieved. A major component of the SSD controller is a non-volatile buffer memory, which interfaces fast disk drive protocols and slow write and read cycles of NAND flash. Preferably MRAM or Phase Change RAM can be used for the buffer memory. Non-volatile tables can also be implemented for storing dynamic logical to physical address translation, defective sector information and their spare sectors and/or SSD configuration parameters.
    Type: Application
    Filed: January 23, 2009
    Publication date: July 29, 2010
    Inventors: Hsu Kai Yang, Po-Kang Wang, Takuma Murai, Takehiro Kamigama
  • Publication number: 20100176429
    Abstract: An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 15, 2010
    Inventors: Po-Kang Wang, Yimin Guo, Cheng T. Horng, Tai Min, Ru-Ying Tong
  • Publication number: 20100178715
    Abstract: An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 15, 2010
    Inventors: Po-Kang Wang, Yimin Guo, Cheng T. Horng, Tai Min, Ru-Ying Tong
  • Patent number: 7750620
    Abstract: By subdividing the free layer of a GMR/TMR device into multiple sub-elements that share common top and bottom electrodes, a magnetic detector is produced that is domain stable in the presence of large stray fields, thereby eliminating the need for longitudinal bias magnets. Said detector may be used to measure electric currents without being affected by local temperature fluctuations and/or stray fields.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: July 6, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Yimin Guo, Po-Kang Wang
  • Patent number: 7715224
    Abstract: An MRAM that is not subject to accidental writing of half-selected memory elements is described, together with a method for its manufacture. The key features of this MRAM are a C-shaped memory element used in conjunction with a segmented bit line architecture.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: May 11, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Tai Min, Po Kang Wang
  • Patent number: 7696548
    Abstract: An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: April 13, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Po-Kang Wang, Yimin Guo, Cheng Horng, Tai Min, Ru-Ying Tong
  • Publication number: 20100065935
    Abstract: A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by a NOX process, a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0, and a Ru capping layer to enhance the spin scattering effect and increase dR/R. Good write margin is achieved by modifying the NOX process to afford a RA less than 10 ohm-?m2 and good read margin is realized with a dR/R of >100% by annealing at 330° C. or higher to form crystalline CoFeB free layers. The NCC thickness is maintained in the 6 to 10 Angstrom range to reduce Rp and avoid Fe(Si) granules from not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A FeSiO layer may be inserted below the Ru layer in the capping layer to prevent the Ru from causing a high damping constant in the upper CoFeB free layer.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Po-Kang Wang, Robert Beach, Witold Kula
  • Patent number: 7635974
    Abstract: A magnetic field angle sensor for measurement of a magnetic field angle over a 360° range has magnetic tunnel junction elements oriented at multiple angles. The magnetic field angle sensor includes multiple magnetic tunnel junction elements formed on a substrate that have an anti-ferromagnetic layer and pinned synthetic multiple layer. The magnetic tunnel junction elements are patterned to have a large dimensional aspect ratio and large anisotropies the pinned synthetic multiple layer of the magnetic tunnel junction elements. The magnetic tunnel junction elements are annealed in the presence of a strong magnetic field in a direction of the reference axis and the annealed for a second time with no external magnetic field so that exchange pinning is reduced and strong stress induced anisotropies of the pinned synthetic multiple layer align magnetization of the pinned synthetic multiple layer align a long axis of each of the magnetic tunnel junction elements.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: December 22, 2009
    Assignee: MagIC Technologies, Inc.
    Inventors: Yimin Guo, Po-Kang Wang
  • Patent number: 7613868
    Abstract: A method and system for programming and reading a magnetic memory is disclosed. The magnetic memory includes a plurality of selectable word line segments and a plurality of magnetic storage cells corresponding to each word line segment. The method and system include reading the magnetic storage cells corresponding to a word line segment to determine a state of each magnetic storage cell. The method and system also include writing data to a portion of the magnetic cells corresponding to the word line segment after the reading. The method and system also include rewriting the state to each of a remaining portion of the magnetic storage cells corresponding to the word line segments at substantially the same time as the portion of the magnetic cells are written.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: November 3, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Hsu Kai (Karl) Yang, Xizeng Shi, Po-Kang Wang, Bruce Yee Yang
  • Publication number: 20090268344
    Abstract: A structure and a process for a perpendicular write pole that provides increased magnetic flux at the ABS is disclosed. This is accomplished by increasing the amount of write flux that originates above the write gap, without changing the pole taper at the ABS. Three embodiment of the invention are discussed.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Inventors: Lijie Guan, Po-Kang Wang, Moris Dovek, Joe Smyth, Kenichi Takano, Yoshitaka Sasaki
  • Patent number: 7609543
    Abstract: Voltage and current stress for magnetic random access memory (MRAM) cells can weed out potential early failure cells. Method and circuit implementation of such a stress test for a MRAM comprise coupling a stress test circuit to the read bus of the MRAM and stressing the Magnetic Tunnel Junctions (MTJS) by tying them to ground by activating isolation transistors associated with them. Read word lines control which MTJs are stressed Both the method and implementation can be used for any memory cells based on resistance differences, such as Phase RAM or Spin Valve MRAM.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 27, 2009
    Assignee: MagIC Technologies, Inc.
    Inventors: Hsu Kai Yang, Lejan Pu, Perng-Fei Yuh, Po-Kang Wang
  • Patent number: 7599158
    Abstract: As track density requirements for disk drives have grown more aggressive, GMR devices have been pushed to narrower track widths to match the track pitch of the drive width. Narrower track widths degrade stability, cause amplitude loss, due to the field originating from the hard bias structure, and side reading. This problem has been overcome by adding an additional layer of soft magnetic material above the hard bias layers. The added layer provides flux closure to the hard bias layers thereby preventing flux leakage into the gap region. A non-magnetic layer must be included to prevent exchange coupling to the hard bias layers. In at least one embodiment the conductive leads are used to accomplish this. A process for manufacturing the device is also described.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 6, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Po Kang Wang, Moris Dovek, Jibin Geng, Tai Min
  • Patent number: 7598597
    Abstract: A second shield layer, under the master shielding layer, is added to a segmented MRAM array. This additional shielding is patterned so as to provide one shield per bit slice. The placement of longitudinal biasing tabs at the ends of these segmented shields ensures that each segmented shield is a single magnetic domain, making it highly effective as a shield against very small stray fields.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: October 6, 2009
    Assignee: MagIC Technologies, Inc.
    Inventors: Yimin Guo, Po-Kang Wang
  • Patent number: 7588945
    Abstract: A process for manufacturing a random access memory cell, that is capable of storing multiple information states in a single physical bit, is described. The basic structure combines a conventional MTJ with a reference stack that is magnetostatically coupled to the MTJ. The MTJ is read in the usual way but data is written and stored in the reference stack. Through use of two bit lines, the direction of magnetization of the free layer can be changed in small increments each unique direction representing a different information state.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: September 15, 2009
    Assignee: MagIC Technologies, Inc.
    Inventors: Tai Min, Po-Kang Wang
  • Patent number: 7582942
    Abstract: The present invention provides an MRAM that includes a conductive line for generating a magnetic field. The latter is enhanced by the addition of a flux concentrator made from a single plane of soft ferromagnetic material, magnetically stabilized by means of an antiferromagnetic layer. This structure, in addition to being very easy to fabricate, facilitates close control over its magnetic properties, including uniformity and domain structure.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 1, 2009
    Assignee: MagIC Technologies, Inc.
    Inventors: Yimin Guo, Po-Kang Wang
  • Publication number: 20090201018
    Abstract: By subdividing the free layer of a GMR/TMR device into multiple sub-elements that share common top and bottom electrodes, a magnetic detector is produced that is domain stable in the presence of large stray fields, thereby eliminating the need for longitudinal bias magnets. Said detector may be used to measure electric currents without being affected by local temperature fluctuations and/or stray fields.
    Type: Application
    Filed: January 26, 2009
    Publication date: August 13, 2009
    Inventors: Yimin Guo, Po-Kang Wang
  • Publication number: 20090184704
    Abstract: By subdividing the free layer of a GMR/TMR device into multiple sub-elements that share common top and bottom electrodes, a magnetic detector is produced that is domain stable in the presence of large stray fields, thereby eliminating the need for longitudinal bias magnets. Said detector may be used to measure electric currents without being affected by local temperature fluctuations and/or stray fields.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 23, 2009
    Inventors: Yimin Guo, Po-Kang Wang
  • Publication number: 20090096043
    Abstract: We describe the manufacturing process for and structure of a CPP MTJ MRAM unit cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The strength of the switching field, Hs of the cell is controlled by the magnetic anisotropy of the cell which, in turn, is controlled by a combination of the shape anisotropy and the stress and magnetostriction of the cell free layer. The coefficient of magnetostriction of the free layer can be adjusted by methods such as adding Nb or Hf to alloys of Ni, Fe, Co and B or by forming the free layer as a lamination of layers having different values of their coefficients of magnetostriction. Thus, by tuning the coefficient of magnetostriction of the cell free layer it is possible to produce a switching field of sufficient magnitude to render the cell thermally stable while maintaining a desirable switching current.
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Inventors: Tai Min, Po Kang Wang
  • Publication number: 20090086531
    Abstract: Voltage and current stress for magnetic random access memory (MRAM) cells can weed out potential early failure cells. Method and circuit implementation of such a stress test for a MRAM comprise coupling a stress test circuit to the read bus of the MRAM and stressing the Magnetic Tunnel Junctions (MTJS) by tying them to ground by activating isolation transistors associated with them. Read word lines control which MTJs are stressed Both the method and implementation can be used for any memory cells based on resistance differences, such as Phase RAM or Spin Valve MRAM.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 2, 2009
    Inventors: Hsu Kai Yang, Lejan Pu, Perng-Fei Yuh, Po-Kang Wang