Patents by Inventor Pranita Kulkarni

Pranita Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120038008
    Abstract: In one aspect of the present invention, a method for fabricating a field effect transistor device includes forming a dummy gate stack on a first portion of a substrate, forming a source region and a drain region adjacent to the dummy gate stack, forming a ion doped source extension portion in the substrate, forming an ion doped drain extension portion in the substrate, forming a first spacer portion adjacent to the dummy gate stack, removing the dummy gate stack to expose a channel region of the substrate, a portion of the ion doped source extension portion, and a portion of the ion doped drain extension portion, forming a second spacer portion on the exposed portion of the ion doped source extension portion and on the exposed portion of the ion doped drain extension portion, and forming a gate stack on the exposed channel region of the substrate.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dechao Guo, Pranita Kulkarni, Ramachandran Muralidhar, Chun-Chen Yeh
  • Publication number: 20120025282
    Abstract: In one exemplary embodiment of the invention, a semiconductor structure includes: a substrate; and a plurality of devices at least partially overlying the substrate, where the plurality of devices include a first device coupled to a second device via a first raised source/drain having a first length, where the first device is further coupled to a second raised source/drain having a second length, where the first device comprises a transistor, where the first raised source/drain and the second raised source/drain at least partially overly the substrate, where the second raised source/drain comprises a terminal electrical contact, where the second length is greater than the first length.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20120025288
    Abstract: In one exemplary embodiment, a semiconductor structure including: a silicon-on-insulator substrate having of a top silicon layer overlying an insulation layer, where the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, where the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, where at least a first portion of the backside strap underlies the doped portion of the top silicon layer, where the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, where the second epitaxially-deposited material further at least partially overlies the first portion of the backside strap.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20110316083
    Abstract: A back-gated field effect transistor (FET) includes a substrate, the substrate comprising top semiconductor layer on top of a buried dielectric layer on top of a bottom semiconductor layer; a front gate located on the top semiconductor layer; a channel region located in the top semiconductor layer under the front gate; a source region located in the top semiconductor layer on a side of the channel region, and a drain region located in the top semiconductor layer on the side of the channel region opposite the source regions; and a back gate located in the bottom semiconductor layer, the back gate configured such that the back gate abuts the buried dielectric layer underneath the channel region, and is separated from the buried dielectric layer by a separation distance underneath the source region and the drain region.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce Doris, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20110309446
    Abstract: A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate; forming a spacer layer over the semiconductor substrate and patterned gate structure; removing horizontally disposed portions of the spacer layer so as to form a vertical sidewall spacer adjacent the patterned gate structure; and forming a raised source/drain (RSD) structure over the semiconductor substrate and adjacent the vertical sidewall spacer, wherein the RSD structure has a substantially vertical sidewall profile so as to abut the vertical sidewall spacer and produce one of a compressive and a tensile strain on a channel region of the semiconductor substrate below the patterned gate structure.
    Type: Application
    Filed: June 16, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20110309445
    Abstract: Embodiments of the present invention provide the ability to fabricate devices having similar physical dimensions, yet with different operating characteristics due to the different effective channel lengths. The effective channel length is controlled by forming an abrupt junction at the boundary of the gate and at least one source or drain. The abrupt junction impacts the diffusion during an anneal process, which in turn controls the effective channel length, allowing physically similar devices on the same chip to have different operating characteristics.
    Type: Application
    Filed: June 16, 2010
    Publication date: December 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pranita Kulkarni, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20110303915
    Abstract: Methods for fabricating FET device structures are disclosed. The methods include receiving a fin of a Si based material, and converting a region of the fin into an oxide element. The oxide element exerts pressure onto the fin where a Fin-FET device is fabricated. The exerted pressure induces compressive stress in the device channel of the Fin-FET device. The methods also include receiving a rectangular member of a Si based material and converting a region of the member into an oxide element. The methods further include patterning the member that N fins are formed in parallel, while being abutted by the oxide element, which exerts pressure onto the N fins. Fin-FET devices are fabricated in the compressed fins, which results in compressively stressed device channels. FET devices structures are also disclosed. An FET devices structure has a Fin-FET device with a fin of a Si based material. An oxide element is abutting the fin and exerts pressure onto the fin.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20110298025
    Abstract: At least one semiconductor fin for a capacitor is formed concurrently with other semiconductor fins for field effect transistors. A lower conductive layer is deposited and lithographically patterned to form a lower conductive plate located on the at least one semiconductor fin. A dielectric layer and at least one upper conductive layer are formed and lithographically patterned to form a node dielectric and an upper conductive plate over the lower conductive plate as well as a gate dielectric and a gate conductor over the other semiconductor fins. The lower conductive plate, the node dielectric, and the upper conductive plate collectively form a capacitor. The finFETs may be dual gate finFETs or trigate finFETs. A buried insulator layer may be optionally recessed to increase the capacitance. Alternately, the lower conductive plate may be formed on a planar surface of the buried insulator layer.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wilifried E. Haensch, Pranita Kulkarni, Tenko Yamashita
  • Publication number: 20110291100
    Abstract: A device and method for inducing stress in a semiconductor layer includes providing a substrate having a dielectric layer formed between a first semiconductor layer and a second semiconductor layer and processing the second semiconductor layer to form an amorphized material. A stress layer is deposited on the first semiconductor layer. The wafer is annealed to memorize stress in the second semiconductor layer by recrystallizing the amorphized material.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: KANGGUO CHENG, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20110291189
    Abstract: A device and method for inducing stress in a semiconductor layer includes providing a substrate having a dielectric layer formed between a first semiconductor layer and a second semiconductor layer. A removable buried layer is provided on or in the second semiconductor layer. A gate structure with side spacers is formed on the first semiconductor layer. Recesses are formed down to the removable buried layer in areas for source and drain regions. The removable buried layer is etched away to form an undercut below the dielectric layer below the gate structure. A stressor layer is formed in the undercut, and source and drain regions are formed.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20110291202
    Abstract: A device and method for reducing junction leakage in a semiconductor junction includes forming a faceted raised structure in a source/drain region of the device. Dopants are diffused from the faceted raised structure into a substrate below the faceted raised structure to form source/drain regions. A sprinkle implantation is applied on the faceted raised structure to produce a multi-depth dopant profile in the substrate for the source/drain regions.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20110284967
    Abstract: A method for fabricating an FET device is disclosed. The method includes Fin-FET devices with fins that are composed of a first material, and then merged together by epitaxial deposition of a second material. The fins are vertically recesses using a selective etch. A continuous silicide layer is formed over the increased surface areas of the first material and the second material, leading to smaller resistance. A stress liner overlaying the FET device is afterwards deposited. An FET device is also disclosed, which FET device includes a plurality of Fin-FET devices, the fins of which are composed of a first material. The FET device includes a second material, which is epitaxially merging the fins. The fins are vertically recessed relative to an upper surface of the second material. The FET device furthermore includes a continuous silicide layer formed over the fins and over the second material, and a stress liner covering the device.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 24, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8053317
    Abstract: Method of forming a semiconductor device which includes the steps of obtaining a semiconductor substrate having a logic region and an STI region; sequentially depositing layers of high K material, metal gate, first silicon and hardmask; removing the hardmask and first silicon layers from the logic region; applying a second layer of silicon on the semiconductor substrate such that the logic region has layers of high K material, metal gate and second silicon and the STI region has layers of high K material, metal gate, first silicon, hardmask and second silicon. There may also be a second hardmask layer between the metal gate layer and the first silicon layer in the STI region. There may also be a hardmask layer between the metal gate layer and the first silicon layer in the STI region but no hardmask layer between the first and second layers of silicon in the STI region.
    Type: Grant
    Filed: August 15, 2009
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Wilfried Ernst-August Haensch, Pranita Kulkarni, Fei Liu, Philip J. Oldiges, Keith Kwong Hon Wong
  • Publication number: 20110254090
    Abstract: A transistor is provided that includes a buried oxide layer above a substrate. A silicon layer is above the buried oxide layer. A gate stack is on the silicon layer, the gate stack including a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. A nitride liner is adjacent to the gate stack. An oxide liner is adjacent to the nitride liner. A set of faceted raised source/drain regions having a part including a portion of the silicon layer. The set of faceted raised source/drain regions also include a first faceted side portion and a second faceted side portion.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 20, 2011
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam Shahidi
  • Publication number: 20110254098
    Abstract: A replacement gate structure and method of fabrication are disclosed. The method provides for fabrication of both high performance FET and low leakage FET devices within the same integrated circuit. Low leakage FET devices are fabricated with a hybrid gate dielectric comprised of a low-K dielectric layer and a high-K dielectric layer. High performance FET devices are fabricated with a low-K gate dielectric.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith Kwong Hon Wong, Kangguo Cheng, Dechao Guo, Pranita Kulkarni
  • Publication number: 20110221003
    Abstract: A method and structure for forming a field effect transistor with reduced contact resistance are provided. The reduced contact resistance is manifested by a reduced metal semiconductor alloy contact resistance and a reduced conductively filled via contact-to-metal semiconductor alloy contact resistance. The reduced contact resistance is achieved in this disclosure by texturing the surface of the transistor's source region and/or the transistor's drain region. Typically, both the source region and the drain region are textured in the present disclosure. The textured source region and/or the textured drain region have an increased area as compared to a conventional transistor that includes a flat source region and/or a flat drain region. A metal semiconductor alloy, e.g., a silicide, is formed on the textured surface of the source region and/or the textured surface of the drain region. A conductively filled via contact is formed atop the metal semiconductor alloy.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 15, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20110121370
    Abstract: A method of fabricating an embedded stressor within a semiconductor structure and a semiconductor structure including the embedded stressor includes forming forming a dummy gate stack over a substrate of stressor material, anistropically etching sidewall portions of the substrate subjacent to the dummy gate stack to form the embedded stressor having angled sidewall portions, forming conductive material onto the angled sidewall portions of the embedded stressor, removing the dummy gate stack, planarizing the conductive material, and forming a gate stack on the conductive material.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dechao Guo, Shu-Jen Han, Pranita Kulkarni, Philip J. Oldiges
  • Publication number: 20110115022
    Abstract: A semiconductor device and a method of fabricating a semiconductor device are disclosed. In one embodiment, the method comprises providing a semiconductor substrate, epitaxially growing a Ge layer on the substrate, and epitaxially growing a semiconductor layer on the Ge layer, where the semiconductor layer has a thickness of 10 nm or less. This method further comprises removing at least a portion of the Ge layer to form a void beneath the Si layer, and filling the void at least partially with a dielectric material. In this way, the semiconductor layer becomes an extremely thin semiconductor-on-insulator layer. In one embodiment, after the void is filled with the dielectric material, in-situ doped source and drain regions are grown on the semiconductor layer. In one embodiment, the method further comprises annealing said source and drain regions to form doped extension regions in the semiconductor layer.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 19, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Dechao Guo, Pranita Kulkarni, Philip J. Oldiges, Ghavam G. Shahidi
  • Publication number: 20110042744
    Abstract: A method of fabricating a semiconductor device is provided in which the channel of the device is present in an extremely thin silicon on insulator (ETSOI) layer, i.e., a silicon containing layer having a thickness of less than 10.0 nm. In one embodiment, the method may begin with providing a substrate having at least a first semiconductor layer overlying a dielectric layer, wherein the first semiconductor layer has a thickness of less than 10.0 nm. A gate structure is formed directly on the first semiconductor layer. A in-situ doped semiconductor material is formed on the first semiconductor layer adjacent to the gate structure. The dopant from the in-situ doped semiconductor material is then diffused into the first semiconductor layer to form extension regions. The method is also applicable to finFET structures.
    Type: Application
    Filed: August 18, 2009
    Publication date: February 24, 2011
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Pranita Kulkarni, Ghavam Shahidi
  • Publication number: 20110037128
    Abstract: Method of forming a semiconductor device which includes the steps of obtaining a semiconductor substrate having a logic region and an STI region; sequentially depositing layers of high K material, metal gate, first silicon and hardmask; removing the hardmask and first silicon layers from the logic region; applying a second layer of silicon on the semiconductor substrate such that the logic region has layers of high K material, metal gate and second silicon and the STI region has layers of high K material, metal gate, first silicon, hardmask and second silicon. There may also be a second hardmask layer between the metal gate layer and the first silicon layer in the STI region. There may also be a hardmask layer between the metal gate layer and the first silicon layer in the STI region but no hardmask layer between the first and second layers of silicon in the STI region.
    Type: Application
    Filed: August 15, 2009
    Publication date: February 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Satya N. Chakravarti, Dechao Guo, Wilfried Ernst-August Haensch, Pranita Kulkarni, Fei Liu, Philip J. Oldiges, Keith Kwong Hon Wong