Patents by Inventor Pranita Kulkarni

Pranita Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120220114
    Abstract: A method for inducing a tensile stress in a channel of a field effect transistor (FET) includes forming a nitride film over the FET; forming a contact hole to the FET through the nitride film; and performing ultraviolet (UV) curing of the nitride film after forming the contact hole to the FET through the nitride film, wherein the UV cured nitride film induces the tensile stress in the channel of the FET.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 30, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ming Cai, Dechao Guo, Chun-chen Yeh, Pranita Kulkarni
  • Publication number: 20120216158
    Abstract: Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. BEDELL, Kangguo CHENG, Bruce B. DORIS, Ali KHAKIFIROOZ, Pranita KULKARNI, Katherine L. SAENGER
  • Publication number: 20120205716
    Abstract: Epitaxially grown extension regions are disclosed for scaled CMOS devices. Semiconductor devices are provided that comprise a field effect transistor (FET) structure having a gate stack on a silicon substrate, wherein the field effect transistor structure comprises at least a channel layer formed below the gate stack. One or more etched extension regions containing an epitaxially grown dopant are provided in the channel layer.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Jeffrey B. Johnson, Pranita Kulkarni, Douglas C. LaTulipe, JR., Alexander Reznicek
  • Publication number: 20120193710
    Abstract: A device and method for reducing junction leakage in a semiconductor junction includes forming a faceted raised structure in a source/drain region of the device. Dopants are diffused from the faceted raised structure into a substrate below the faceted raised structure to form source/drain regions. A sprinkle implantation is applied on the faceted raised structure to produce a multi-depth dopant profile in the substrate for the source/drain regions.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kanggou Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20120193713
    Abstract: A fin field-effect transistor (finFET) device having reduced capacitance, access resistance, and contact resistance is formed. A buried oxide, a fin, a gate, and first spacers are provided. The fin is doped to form extension junctions extending under the gate. Second spacers are formed on top of the extension junctions. Each is second spacer adjacent to one of the first spacers to either side of the gate. The extension junctions and the buried oxide not protected by the gate, the first spacers, and the second spacers are etched back to create voids. The voids are filled with a semiconductor material such that a top surface of the semiconductor material extending below top surfaces of the extension junctions, to form recessed source-drain regions. A silicide layer is formed on the recessed source-drain regions, the extension junctions, and the gate not protected by the first spacers and the second spacers.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventors: Pranita Kulkarni, Ali Khakifirooz, Kangguo Cheng, Bruce B. Doris, Ghavam Shahidi, Hemanth Jagannathan
  • Publication number: 20120175749
    Abstract: A structure comprises first and at least second fin structures are formed. Each of the first and at least second fin structures has a vertically oriented semiconductor body. The vertically oriented semiconductor body is comprised of vertical surfaces. A doped region in each of the first and at least second fin structures is comprised of a concentration of dopant ions present in the semiconductor body to form a first resistor and at least a second resistor, and a pair of merged fins formed on outer portions of the doped regions of the first and at least second fin structures. The pair of merged fins is electrically connected so that the first and at least second resistors are electrically connected in parallel with each other.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 12, 2012
    Applicant: International Business Machines Corporation
    Inventors: Wilfried E. Haensch, Pranita Kulkarni, Tenko Yamashita
  • Patent number: 8207038
    Abstract: A method for fabricating an FET device is disclosed. The method includes Fin-FET devices with fins that are composed of a first material, and then merged together by epitaxial deposition of a second material. The fins are vertically recesses using a selective etch. A continuous silicide layer is formed over the increased surface areas of the first material and the second material, leading to smaller resistance. A stress liner overlaying the FET device is afterwards deposited. An FET device is also disclosed, which FET device includes a plurality of Fin-FET devices, the fins of which are composed of a first material. The FET device includes a second material, which is epitaxially merging the fins. The fins are vertically recessed relative to an upper surface of the second material. The FET device furthermore includes a continuous silicide layer formed over the fins and over the second material, and a stress liner covering the device.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: June 26, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20120153397
    Abstract: An FET device includes a plurality of Fin-FET devices. The fins of the Fin-FET devices are composed of a first material. The FET device includes a second material, which is epitaxially merging the fins. The fins are vertically recessed relative to an upper surface of the second material. The FET device furthermore includes a continuous silicide layer formed over the fins and over the second material, and a stress liner covering the device.
    Type: Application
    Filed: February 25, 2012
    Publication date: June 21, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8202767
    Abstract: A device and method for reducing junction leakage in a semiconductor junction includes forming a faceted raised structure in a source/drain region of the device. Dopants are diffused from the faceted raised structure into a substrate below the faceted raised structure to form source/drain regions. A sprinkle implantation is applied on the faceted raised structure to produce a multi-depth dopant profile in the substrate for the source/drain regions.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 19, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20120119266
    Abstract: A field effect transistor device includes a gate stack portion disposed on a substrate, and a channel region in the substrate having a depth partially defined by the gate stack portion and a silicon region of the substrate, the silicon region having a sloped profile such that a distal regions of the channel region have greater depth than a medial region of the channel region.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dechao Guo, Pranita Kulkarni, Philip J. Oldiges, Alexander Reznicek, Keith Kwong Hon Wong
  • Publication number: 20120112207
    Abstract: The present disclosure, which is directed to ultra-thin-body-and-BOX and Double BOX fully depleted SOI devices having an epitaxial diffusion-retarding semiconductor layer that slows dopant diffusion into the SOI channel, and a method of making these devices. Dopant concentrations in the SOI channels of the devices of the present disclosure having an epitaxial diffusion-retarding semiconductor layer between the substrate and SOI channel are approximately 50 times less than the dopant concentrations measured in SOI channels of devices without the epitaxial diffusion-retarding semiconductor layer.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8169024
    Abstract: A method of fabricating a semiconductor device is provided in which the channel of the device is present in an extremely thin silicon on insulator (ETSOI) layer, i.e., a silicon containing layer having a thickness of less than 10.0 nm. In one embodiment, the method may begin with providing a substrate having at least a first semiconductor layer overlying a dielectric layer, wherein the first semiconductor layer has a thickness of less than 10.0 nm. A gate structure is formed directly on the first semiconductor layer. A in-situ doped semiconductor material is formed on the first semiconductor layer adjacent to the gate structure. The dopant from the in-situ doped semiconductor material is then diffused into the first semiconductor layer to form extension regions. The method is also applicable to finFET structures.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: May 1, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Pranita Kulkarni, Ghavam Shahidi
  • Publication number: 20120080802
    Abstract: A semiconductor device includes an epitaxy layer formed on semiconductor substrate, a device layer formed on the epitaxy layer, a trench formed within the semiconductor substrate and including a dielectric layer forming a liner within the trench and a conductive core forming a through-silicon via conductor, and a deep trench isolation structure formed within the substrate and surrounding the through-silicon via conductor. A region of the epitaxy layer formed between the through-silicon via conductor and the deep trench isolation structure is electrically isolated from any signals applied to the semiconductor device, thereby decreasing parasitic capacitance.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Subramanian Iyer, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20120074494
    Abstract: A method of forming a strained, semiconductor-on-insulator substrate includes forming a second semiconductor layer on a first semiconductor substrate. The second semiconductor is lattice matched to the first semiconductor substrate such that the second semiconductor layer is subjected to a first directional stress. An active device semiconductor layer is formed over the second semiconductor layer such that the active device semiconductor layer is initially in a relaxed state. One or more trench isolation structures are formed through the active device layer and through the second semiconductor layer so as to relax the second semiconductor layer below the active device layer and impart a second directional stress on the active device layer opposite the first directional stress.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20120068267
    Abstract: Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Katherine L. Saenger
  • Publication number: 20120049284
    Abstract: In one exemplary embodiment, a semiconductor structure includes: a semiconductor-on-insulator substrate with a top semiconductor layer overlying an insulation layer and the insulation layer overlies a bottom substrate layer; at least one first device at least partially overlying and disposed upon a first portion of the top semiconductor layer, where the first portion has a first thickness, a first width and a first depth; and at least one second device at least partially overlying and disposed upon a second portion of the top semiconductor layer, where the second portion has a second thickness, a second width and a second depth, where at least one of the following holds: the first thickness is greater than the second thickness, the first width is greater than the second width and the first depth is greater than the second depth.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8124470
    Abstract: A method of forming a strained, semiconductor-on-insulator substrate includes forming a second semiconductor layer on a first semiconductor substrate. The second semiconductor is lattice matched to the first semiconductor substrate such that the second semiconductor layer is subjected to a first directional stress. An active device semiconductor layer is formed over the second semiconductor layer such that the active device semiconductor layer is initially in a relaxed state. One or more trench isolation structures are formed through the active device layer and through the second semiconductor layer so as to relax the second semiconductor layer below the active device layer and impart a second directional stress on the active device layer opposite the first directional stress.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: February 28, 2012
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20120043610
    Abstract: A method for fabricating FET devices is disclosed. The method includes forming continuous fins of a semiconductor material and fabricating gate structures overlaying the continuous fins. After the fabrication of the gate structures, the method uses epitaxial deposition to merge the continuous fins to one another. Next, the continuous fins are cut into segments. The fabricated FET devices are characterized as being non-planar devices. A placement of non-planar FET devices is also disclosed, which includes non- planar devices that have electrodes, and the electrodes contain fins and an epitaxial layer which merges the fins together. The non-planar devices are so placed that their gate structures are in a parallel configuration separated from one another by a first distance, and the fins of differing non-planar devices line up in essentially straight lines.
    Type: Application
    Filed: August 17, 2010
    Publication date: February 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20120043623
    Abstract: A semiconductor device is provided that includes a gate structure present on a substrate. The gate structure includes a gate conductor with an undercut region in sidewalls of a first portion of the gate conductor, wherein a second portion of the gate conductor is present over the first portion of the gate conductor and includes a protruding portion over the undercut region. A spacer is adjacent to sidewalls of the gate structure, wherein the spacer includes an extending portion filling the undercut region. A raised source region and a raised drain region is present adjacent to the spacers. The raised source region and the raised drain region are separated from the gate conductor by the extending portion of the spacers.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
  • Publication number: 20120038007
    Abstract: A method for fabricating a field effect transistor device includes forming a dummy gate stack on a first portion of a substrate, forming a source region and a drain region adjacent to the dummy gate stack, forming a ion doped source extension portion in the substrate, the source extension portion extending from the source region into the first portion of the substrate, forming an ion doped drain extension portion in the substrate, the drain extension portion extending from the drain region into the first portion of the substrate, removing a portion of the dummy gate stack to expose an interfacial layer of the dummy gate stack, implanting ions in the source extension portion and the drain extension portion to form a channel region in the first portion of the substrate, removing the interfacial layer, and forming a gate stack on the channel region of the substrate.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dechao Guo, Pranita Kulkarni, Ramachandran Muralidhar, Chun-Chen Yeh