Patents by Inventor Prashant Kumar KULSHRESHTHA

Prashant Kumar KULSHRESHTHA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250140537
    Abstract: Semiconductor processing chambers and systems, as well as methods of cleaning such chambers and systems are provided. Processing chambers and systems include a chamber body that defines a processing region, a liner positioned within the chamber body that defines a liner volume, a faceplate positioned atop the liner, a substrate support disposed within the chamber body, and a cleaning gas source coupled with the liner volume through a cleaning gas plenum and one or more inlet apertures. Systems and chambers include where at least one of the one or more inlet apertures is disposed in the processing region between the faceplate and a bottom wall of the chamber body.
    Type: Application
    Filed: December 13, 2023
    Publication date: May 1, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Zaoyuan Ge, Manjunath Veerappa Chobari Patil, Pavan Kumar S M, Dinesh Babu, Nuo Wang, Kaili Yu, Xinyi Zhong, Bharati Neelamraju, Liangfa Hu, Neela Ayalasomayajula, Sungwon Ha, Prashant Kumar Kulshreshtha, Amit Bansal, Daemian Raj Benjamin Raj, Badri N. Ramamurthi, Travis Mazzy, Mohammed Salman Mohiuddin, Karthik Suresh Menon, Lihua Wu, Prasath Poomani
  • Patent number: 12211694
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about ?100 MPa to about 100 MPa.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: January 28, 2025
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Ziqing Duan, Karthik Thimmavajjula Narasimha, Kwangduk Douglas Lee, Bok Hoen Kim
  • Patent number: 12211728
    Abstract: Aspects of the present disclosure relate to one or more implementations of a substrate support for a processing chamber. In one implementation, a substrate support includes a body having a center, and a support surface on the body configured to at least partially support a substrate. The substrate support includes a first angled wall that extends upward and radially outward from the support surface, and a first upper surface disposed above the support surface. The substrate support also includes a second angled wall that extends upward and radially outward from the first upper surface, the first upper surface extending between the first angled wall and the second angled wall. The substrate support also includes a second upper surface extending from the second angled wall. The second upper surface is disposed above the first upper surface.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: January 28, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Abdul Aziz Khaja, Venkata Sharat Chandra Parimi, Sarah Michelle Bobek, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar
  • Publication number: 20250022709
    Abstract: In one or more embodiments, a method for depositing a carbon hard-mask material by plasma-enhanced chemical vapor deposition (PECVD) includes heating a substrate contained within a process chamber to a temperature in a range from about 100° C. to about 700° C. and producing a plasma with a power generator emitting an RF power of greater than 3 kW. In some examples, the temperature is in a range from about 300° C. to about 700° C. and the RF power is greater than 3 kW to about 7 kW. The method also includes flowing a hydrocarbon precursor into the plasma within the process chamber and forming a carbon hard-mask layer on the substrate at a rate of greater than 5,000 ?/min, such as up to about 10,000 ?/min or faster.
    Type: Application
    Filed: September 27, 2024
    Publication date: January 16, 2025
    Inventors: Byung Seok KWON, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Bushra AFZAL, Sungwon HA, Vinay K. PRABHAKAR, Viren KALSEKAR, Satya THOKACHICHU, Edward P. HAMMOND, IV
  • Patent number: 12191115
    Abstract: A plasma processing system is described. The system may include a showerhead. The system may further include a first RF generator in electrical communication with the showerhead. The first RF generator may be configured to deliver a first voltage at a first frequency to the showerhead. Additionally, the system may include a second RF generator in electrical communication with a pedestal. The second RF generator may be configured to deliver a second voltage at a second frequency to the pedestal. The second frequency may be less than the first frequency. The system may also include a terminator in electrical communication with the showerhead. The terminator may provide a path to ground for the second voltage. Methods of depositing material using the plasma processing system are described. A method of seasoning a chamber by depositing silicon oxide and silicon nitride on the wall of the chamber is also described.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 7, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Venkata Sharat Chandra Parimi, Xiaoquan Min, Zheng John Ye, Prashant Kumar Kulshreshtha, Vinay K Prabhakar, Lu Xu, Kwangduk Douglas Lee
  • Patent number: 12136549
    Abstract: In one or more embodiments, a method for depositing a carbon hard-mask material by plasma-enhanced chemical vapor deposition (PECVD) includes heating a substrate contained within a process chamber to a temperature in a range from about 100 C to about 700 C and producing a plasma with a power generator emitting an RF power of greater than 3 kW. In some examples, the temperature is in a range from about 300 C to about 700 C and the RF power is greater than 3 kW to about 7 kW. The method also includes flowing a hydrocarbon precursor into the plasma within the process chamber and forming a carbon hard-mask layer on the substrate at a rate of greater than 5,000/min, such as up to about 10,000/min or faster.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: November 5, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Byung Seok Kwon, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Bushra Afzal, Sungwon Ha, Vinay K. Prabhakar, Viren Kalsekar, Satya Teja Babu Thokachichu, Edward P. Hammond, IV
  • Patent number: 12112949
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: October 8, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
  • Patent number: 12100609
    Abstract: One or more embodiments described herein generally relate to methods for chucking and de-chucking a substrate to/from an electrostatic chuck used in a semiconductor processing system. Generally, in embodiments described herein, the method includes: (1) applying a first voltage from a direct current (DC) power source to an electrode disposed within a pedestal; (2) introducing process gases into a process chamber; (3) applying power from a radio frequency (RF) power source to a showerhead; (4) performing a process on the substrate; (5) stopping application of the RF power; (6) removing the process gases from the process chamber; and (7) stopping applying the DC power.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: September 24, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee
  • Patent number: 12027366
    Abstract: Exemplary methods of semiconductor processing may include treating a surface of a substrate with a hydrogen-containing precursor. The substrate may be disposed within a processing region of a semiconductor processing chamber. The methods may include contacting the substrate with a tungsten-containing precursor. The methods may include forming an initiation layer comprising tungsten on the substrate. The methods may include treating the initiation layer with a hydrogen-containing precursor. The methods may include forming a plasma of the tungsten-containing precursor and a carbon-containing precursor. Hydrogen in the plasma may be limited to hydrogen included in the carbon-containing precursor. The methods may include forming a tungsten-containing hardmask layer on the initiation layer.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiaoquan Min, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Kwangduk Lee
  • Patent number: 12014927
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: June 18, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
  • Patent number: 12000048
    Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.
    Type: Grant
    Filed: February 20, 2023
    Date of Patent: June 4, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Kwangduk Douglas Lee, Sungwon Ha, Jian Li
  • Publication number: 20230390811
    Abstract: Exemplary semiconductor processing systems may include a processing chamber defining a processing region. The systems may include a foreline coupled with the processing chamber, the foreline defining a fluid conduit. The systems may include a radical generator having an inlet and an outlet. The outlet may be fluidly coupled with the foreline. The systems may include a gas source fluidly coupled with the inlet of the radical generator. The systems may include a throttle valve coupled with the foreline downstream of the radical generator.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 7, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Khokan Chandra Paul, Truong Van Nguyen, Kelvin Chan, Diwakar Kedlaya, Anantha K. Subramani, Abdul Aziz Khaja, Vijet Patil, Yusheng Fang, Liangfa Hu, Prashant Kumar Kulshreshtha
  • Publication number: 20230386883
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for reducing substrate backside damage during semiconductor device processing. In one implementation, a method of chucking a substrate in a substrate process chamber includes exposing the substrate to a plasma preheat treatment prior to applying a chucking voltage to a substrate support. In one implementation, a substrate support is provided and includes a body having an electrode and thermal control device disposed therein. A plurality of substrate supporting features are formed on an upper surface of the body, each of the substrate supporting features having a substrate supporting surface and a rounded edge.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Liangfa HU, Abdul Aziz KHAJA, Sarah Michelle BOBEK, Prashant Kumar KULSHRESHTHA, Yoichi SUZUKI
  • Patent number: 11830706
    Abstract: Embodiments of the present disclosure generally relate to a pedestal for increasing temperature uniformity in a substrate supported thereon. The pedestal comprises a body having a heater embedded therein. The body comprises a patterned surface that includes a first region having a first plurality of posts extending from a base surface of the body at a first height, and a second region surrounding the central region having a second plurality of posts extending from the base surface at a second height that is greater than the first height, wherein an upper surface of each of the first plurality of posts and the second plurality of posts are substantially coplanar and define a substrate receiving surface.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Venkata Sharat Chandra Parimi, Zubin Huang, Jian Li, Satish Radhakrishnan, Rui Cheng, Diwakar N. Kedlaya, Juan Carlos Rocha-Alvarez, Umesh M. Kelkar, Karthik Janakiraman, Sarah Michelle Bobek, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Byung Seok Kwon
  • Patent number: 11821082
    Abstract: Exemplary methods of semiconductor processing may include forming a silicon oxide material on exposed surfaces of a processing region of a semiconductor processing chamber. The methods may include forming a silicon nitride material overlying the silicon oxide material. The methods may include performing a deposition process on a semiconductor substrate disposed within the processing region of the semiconductor processing chamber. The methods may include performing a chamber cleaning process.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: November 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Xiaoquan Min, Byung Ik Song, Hyung Je Woo, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Kwangduk Lee
  • Patent number: 11814716
    Abstract: Exemplary semiconductor processing chambers may include a gasbox. The chambers may include a substrate support. The chambers may include a blocker plate positioned between the gasbox and the substrate support. The blocker plate may define a plurality of apertures through the plate. The chambers may include a faceplate positioned between the blocker plate and substrate support. The faceplate may be characterized by a first surface facing the blocker plate and a second surface opposite the first surface. The second surface of the faceplate and the substrate support may at least partially define a processing region within the semiconductor processing chamber. The faceplate may be characterized by a central axis, and the faceplate may define a plurality of apertures through the faceplate. The faceplate may define a central recess about the central axis extending from the second surface of the faceplate to a depth less than a thickness of the faceplate.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Fang Ruan, Prashant Kumar Kulshreshtha, Jiheng Zhao, Diwakar Kedlaya
  • Patent number: 11810764
    Abstract: Exemplary semiconductor processing chambers may include a gasbox. The chambers may include a substrate support. The chambers may include a blocker plate positioned between the gasbox and the substrate support. The blocker plate may define a plurality of apertures through the plate. The chambers may include a faceplate positioned between the blocker plate and substrate support. The faceplate may be characterized by a first surface facing the blocker plate and a second surface opposite the first surface. The second surface of the faceplate and the substrate support may at least partially define a processing region within the semiconductor processing chamber. The faceplate may be characterized by a central axis, and the faceplate may define a plurality of apertures through the faceplate. The faceplate may define a plurality of recesses extending about and radially outward of the plurality of apertures.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: November 7, 2023
    Inventors: Fang Ruan, Prashant Kumar Kulshreshtha, Rajaram Narayanan, Diwakar Kedlaya
  • Publication number: 20230317455
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about ?100 MPa to about 100 MPa.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Inventors: Prashant Kumar KULSHRESHTHA, Ziqing DUAN, Karthik Thimmavajjula NARASIMHA, Kwangduk Douglas LEE, Bok Hoen KIM
  • Publication number: 20230298922
    Abstract: Aspects of the present disclosure relate to one or more implementations of a substrate support for a processing chamber. In one implementation, a substrate support includes a body having a center, and a support surface on the body configured to at least partially support a substrate. The substrate support includes a first angled wall that extends upward and radially outward from the support surface, and a first upper surface disposed above the support surface. The substrate support also includes a second angled wall that extends upward and radially outward from the first upper surface, the first upper surface extending between the first angled wall and the second angled wall. The substrate support also includes a second upper surface extending from the second angled wall. The second upper surface is disposed above the first upper surface.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 21, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Abdul Aziz KHAJA, Venkata Sharat Chandra PARIMI, Sarah Michelle BOBEK, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR
  • Patent number: 11756819
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for reducing substrate backside damage during semiconductor device processing. In one implementation, a method of chucking a substrate in a substrate process chamber includes exposing the substrate to a plasma preheat treatment prior to applying a chucking voltage to a substrate support. In one implementation, a substrate support is provided and includes a body having an electrode and thermal control device disposed therein. A plurality of substrate supporting features are formed on an upper surface of the body, each of the substrate supporting features having a substrate supporting surface and a rounded edge.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: September 12, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Liangfa Hu, Abdul Aziz Khaja, Sarah Michelle Bobek, Prashant Kumar Kulshreshtha, Yoichi Suzuki