Patents by Inventor Qingqiao Wei

Qingqiao Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080009121
    Abstract: Methodologies associated with fabricating aligned nanowire lattices are described. One exemplary method embodiment includes providing a twist wafer bonded thin single crystal semiconductor film and a bulk single crystal substrate of the same material. Periodic non-uniform elastic strains present on the surface of the film control the positions where nanocrystals will form on the film. The strains may be removed via annealing and alloying after the formation of nanocrystal arrays.
    Type: Application
    Filed: August 21, 2007
    Publication date: January 10, 2008
    Inventor: Qingqiao Wei
  • Publication number: 20070281156
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: March 21, 2006
    Publication date: December 6, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David Smith, Deli Wang, Zhaohui Zhong
  • Patent number: 7301199
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: November 27, 2007
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln J. Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David C. Smith, Deli Wang, Zhaohui Zhong
  • Patent number: 7276424
    Abstract: Methodologies associated with fabricating aligned nanowire lattices are described. One exemplary method embodiment includes providing a twist wafer bonded thin single crystal semiconductor film and a bulk single crystal substrate of the same material. Periodic non-uniform elastic strains present on the surface of the film control the positions where nanocrystals will form on the film. The strains may be removed via annealing and alloying after the formation of nanocrystal arrays.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: October 2, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Qingqiao Wei
  • Patent number: 7256466
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: August 14, 2007
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20070158766
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Application
    Filed: October 17, 2006
    Publication date: July 12, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20070004222
    Abstract: Methodologies associated with fabricating aligned nanowire lattices are described. One exemplary method embodiment includes providing a twist wafer bonded thin single crystal semiconductor film and a bulk single crystal substrate of the same material. Periodic non-uniform elastic strains present on the surface of the film control the positions where nanocrystals will form on the film. The strains may be removed via annealing and alloying after the formation of nanocrystal arrays.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Inventor: Qingqiao Wei
  • Patent number: 7129554
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: October 31, 2006
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20060175601
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: June 30, 2005
    Publication date: August 10, 2006
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David Smith, Deli Wang, Zhaohui Zhong
  • Publication number: 20060054936
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Application
    Filed: December 15, 2004
    Publication date: March 16, 2006
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20050241959
    Abstract: The disclosure relates to a system having a chemical sensor and either a temperature sensor or an ionic-strength sensor in a same fluidic channel. The disclosure also related to a system having a chemical sensor and either a temperature sensor or an ionic-strength sensor over a same substrate. This system can be capable of measuring chemical concentrations of two or more chemicals and a temperature or ionic strength of a fluid.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Inventors: Kenneth Ward, Pavel Kornilovich, Kevin Peters, Qingqiao Wei
  • Publication number: 20050212531
    Abstract: A fluid sensor for use in an environment having an ambient temperature has a field-effect transistor (FET) comprising a functionalized semiconductor nano-wire, an integral heater disposed proximate to the field-effect transistor to heat the field-effect transistor to an elevated temperature relative to the ambient temperature, and integral thermal insulation disposed to maintain the field-effect transistor at the elevated temperature.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 29, 2005
    Applicant: Hewlett-Packard Development Company, L.P. Intellectual Property Administration
    Inventor: Qingqiao Wei
  • Publication number: 20030089899
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: July 16, 2002
    Publication date: May 15, 2003
    Inventors: Charles M. Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln J. Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David C. Smith, Deli Wang, Zhaohui Zhong
  • Publication number: 20020117659
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Application
    Filed: December 11, 2001
    Publication date: August 29, 2002
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang