Patents by Inventor Qingqing Liang

Qingqing Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150287828
    Abstract: A semiconductor device and a method of manufacturing the same are provided, wherein an example method may include: forming a first semiconductor layer and a second semiconductor layer sequentially on a substrate; patterning the second semiconductor layer and the first semiconductor layer to form a fin; forming an isolation layer on the substrate, wherein the isolation layer exposes a portion of the first semiconductor layer; forming a sacrificial gate stack crossing over the fin on the isolation layer; selectively etching the second semiconductor layer with the sacrificial gate stack as a mask, to expose the first semiconductor layer; selectively etching the first semiconductor layer, to form a void beneath the second semiconductor layer; filling the void with a dielectric material; forming a third semiconductor layer on the substrate, to form source/drain regions; and forming a gate stack to replace the sacrificial gate stack.
    Type: Application
    Filed: November 26, 2012
    Publication date: October 8, 2015
    Inventors: Huilong Zhu, Miao Xu, Haizhou Yin, Qingqing Liang
  • Publication number: 20150279992
    Abstract: The present invention provides a method of manufacturing a fin field effect transistor, comprising: providing an SOI substrate comprising a substrate layer (100), a BOX layer (120) and an SOI layer (130); forming a basic fin structure from an SOI layer; forming source/drain regions (110) on both sides of the basic fin structure; forming a fin structure between the source/drain regions (110) from a basic fin structure; and forming a gate stack across the fin structure. The method of manufacturing a fin field effect transistor provided in the present invention can integrate a high-k gate dielectric layer, a metal gate, and stressed source/drain regions into the fin field effect transistor to enhance the performance of the semiconductor device.
    Type: Application
    Filed: November 27, 2012
    Publication date: October 1, 2015
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin, Qingqing Liang
  • Publication number: 20150279745
    Abstract: There is disclosed a method for manufacturing a semiconductor device comprising two opposite types of MOSFETs formed on one semiconductor substrate, the method comprising: forming a portion of the MOSFET on the semiconductor substrate, said portion of said MOSFET comprising source/drains regions located in the semiconductor substrate, a dummy gate stack located between the source/drain region and above the semiconductor substrate and a gate spacer surrounding the dummy gate stack; removing the dummy gate stack of said MOSFET to form a gate opening which exposes the surface of the semiconductor substrate; forming an interfacial oxide layer on the exposed surface of the semiconductor structure; forming a high-K gate dielectric on the interfacial oxide layer within the gate opening; forming a first metal gate layer on the high-K gate dielectric; implanting doping ions in the first metal gate layer; forming a second metal gate layer on the first metal gate layer to fill up the gate opening; and annealing to diffu
    Type: Application
    Filed: December 7, 2012
    Publication date: October 1, 2015
    Inventors: Qiuxia Xu, Huilong Zhu, Gaobo Xu, Huajie Zhou, Qingqing Liang, Dapeng Chen, Chao Zhao
  • Patent number: 9147745
    Abstract: Semiconductor devices and methods for manufacturing the same are disclosed. In one embodiment, the method comprises: sequentially forming a sacrificial layer and a semiconductor layer on a substrate; forming a first cover layer on the semiconductor layer; forming an opening extending into the substrate with the first cover layer as a mask; selectively removing at least a portion of the sacrificial layer through the opening, and filling an insulating material in a gap due to removal of the sacrificial layer; forming one of source and drain regions in the opening; forming a second cover layer on the substrate; forming the other of the source and drain regions with the second cover layer as a mask; removing a portion of the second cover layer; and forming a gate dielectric layer, and forming a gate conductor in the form of spacer on a sidewall of a remaining portion of the second cover layer.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: September 29, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Huicai Zhong, Hao Wu
  • Publication number: 20150270399
    Abstract: A method for manufacturing a semiconductor structure is disclosed. The method comprises: providing an SOI substrate, which comprises, from top to bottom, an SOI layer (100), a BOX layer (110) and a base layer (130); forming a dummy gate stack on the SOI substrate and an implantation barrier layer on both sides of the dummy gate stack; removing the dummy gate stack to form a gate recess (220); and performing, via the gate recess (220), implantation of stress inducing ions to the semiconductor structure and annealing to form, right below the gate recess (220), a stress inducing region (150) under the BOX layer (110) of the SOI substrate. Accordingly, the present invention further provides a semiconductor structure manufactured according to the above method.
    Type: Application
    Filed: July 31, 2013
    Publication date: September 24, 2015
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20150255594
    Abstract: A quasi-nanowire transistor and a method of manufacturing the same are provided, the quasi-nanowire transistor comprising: providing an SOI substrate comprising a substrate layer (100), a BOX layer (120) and an SOI layer (130); forming a basic fin structure on the SOI layer, the basic fin structure comprising at least one silicon/silicon-germanium stack; forming source/drain regions (110) on both sides of the basic fin structure; forming a quasi-nanowire fin from a basic fin structure and an SOI layer thereunder; and forming a gate stack across the quasi-nanowire fin. The method can effectively control gate length characteristics. A semiconductor structure formed by the above method is also provided.
    Type: Application
    Filed: November 27, 2012
    Publication date: September 10, 2015
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20150255609
    Abstract: Provided are semiconductor devices and methods for manufacturing the same. An example method may include: forming a first semiconductor layer and a second semiconductor layer sequentially on a substrate; patterning the second semiconductor layer and the first semiconductor layer to form a fin; forming an isolation layer on the substrate, wherein the isolation layer exposes a portion of the first semiconductor layer; implanting ions into a portion of the substrate beneath the fin, to form a punch-through stopper; forming a gate stack crossing over the fin on the isolation layer; selectively etching the second semiconductor layer with the gate stack as a mask, to expose the first semiconductor layer; selectively etching the first semiconductor layer, to form a void beneath the second semiconductor layer; and forming a third semiconductor layer on the substrate, to form source/drain regions.
    Type: Application
    Filed: December 4, 2012
    Publication date: September 10, 2015
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang, Haizhou Yin
  • Publication number: 20150243654
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, which comprises: a) forming gate lines extending along one direction on a substrate; b) forming a photoresist layer that covers the semiconductor structure; patterning the photoresist layer to form openings that span over the gate lines: c) implanting ions into the gate lines, such that the gate lines are insulated at the openings. The present invention enables the gate lines to maintain complete shape at formation of electrically isolated gates, which will not cause defects that exist in the prior art when forming a dielectric layers at subsequent steps, thereby guaranteeing performance of semiconductor devices. Additionally, the present invention further provides a semiconductor structure manufactured according to the method provided by the present invention.
    Type: Application
    Filed: September 17, 2012
    Publication date: August 27, 2015
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Chao Zhao
  • Publication number: 20150243598
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, comprising: a) forming metal interconnect liners on a substrate; b) forming a mask layer to cover the metal interconnect liners and forming openings, which expose the metal interconnect liners, on the mask layer; c) etching and disconnecting the metal interconnect liners via the openings, thereby insulating and isolating the metal interconnect liners. The present invention further provides a semiconductor structure, which comprises a substrate and metal interconnect liners, wherein ends of the metal interconnect liners are disconnected by insulating walls formed within the substrate. The structure and the method provided by the present invention are favorable for shortening distance between ends of adjacent metal interconnect liners, saving device area and suppressing short circuits happening to metal interconnect liners.
    Type: Application
    Filed: September 17, 2012
    Publication date: August 27, 2015
    Inventors: Huicai Zhong, Qingqing Liang
  • Patent number: 9117926
    Abstract: A semiconductor device and a method of manufacturing the same is disclosed. In one aspect, the method comprises forming a first MOSFET having a first gate length in a semiconductor substrate, and forming a second MOSFET having a second gate length in the semiconductor substrate. Furthermore, the second gate length is less than the first gate length, and wherein the second MOSFET has a gate stack in the form of a spacer having a gate conductor and a gate dielectric isolating the gate conductor from the semiconductor substrate.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: August 25, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang
  • Publication number: 20150236134
    Abstract: A method of manufacturing a FinFET semiconductor device is provided, wherein the semiconductor fins are formed in a parallel arrangement which intersects the gates arranged in parallel. The polycrystalline silicon layer is deposited and then converted into a single crystal silicon layer such that the single crystal silicon layer and the semiconductor fins are integrated in essence, i.e., the source/drain region in the semiconductor fins is raised and the top area of the semiconductor fins is extended. Subsequently, the single crystal silicon layer above the top of the semiconductor fins is converted into a metal silicide so as to form a source/drain region contact. The source/drain region contact in the present invention has a larger area than that in a conventional FinFET, which decreases the contact resistance and facilitates the formation of a self-aligned metal plug in the follow-up process.
    Type: Application
    Filed: July 18, 2012
    Publication date: August 20, 2015
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huicai Zhong, Qingqing Liang, Chao Zhao
  • Publication number: 20150228735
    Abstract: The present invention provides a method for manufacturing a semiconductor device, which comprises: providing an SOI substrate, which comprises a base layer, an insulating layer located on the base layer and a active layer located on the insulating layer; forming a gate stack on the SOI substrate; etching the active layer, the insulating layer and a part of the base layer of the SOI substrate with the gate stack as a mask, so as to form trenches on both sides of the gate stack; forming a crystal dielectric layer within the trenches, wherein the upper surface of the crystal dielectric layer is lower than the upper surface of the insulating layer and not lower than the lower surface of the insulating layer; and forming source/drain regions on the crystal dielectric layer. The present invention further provides a semiconductor device.
    Type: Application
    Filed: September 17, 2012
    Publication date: August 13, 2015
    Inventors: Huicai Zhong, Chao Zhao, Qingqing Liang
  • Publication number: 20150221768
    Abstract: A method of manufacturing a semiconductor structure is disclosed. The method comprises: providing a substrate, forming a gate stack on the substrate and forming source/drain regions within the substrate; etching the source/drain regions to form trenches; forming a contact layer on the surface of the source/drain regions that have been etched; forming a stress material layer within the trenches; depositing an interlayer dielectric layer and forming contact plugs in contact with the stress material. Accordingly, a semiconductor structure is also disclosed.
    Type: Application
    Filed: September 17, 2012
    Publication date: August 6, 2015
    Inventors: Huicai Zhong, Qingqing Liang, Chao Zhao, Jun Luo
  • Patent number: 9093374
    Abstract: The gate electrode of a metal oxide semiconductor field effect transistor (MOSFET) comprises a source side gate electrode and a drain side gate electrode that abut each other near the middle of the channel. In one embodiment, the source side gate electrode comprises a silicon oxide based gate dielectric and the drain side gate electrode comprises a high-k gate dielectric. The source side gate electrode provides high carrier mobility, while the drain side gate electrode provides good short channel effect and reduced gate leakage. In another embodiment, the source gate electrode and drain gate electrode comprises different high-k gate dielectric stacks and different gate conductor materials, wherein the source side gate electrode has a first work function a quarter band gap away from a band gap edge and the drain side gate electrode has a second work function near the band gap edge.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Qingqing Liang
  • Patent number: 9087691
    Abstract: A MOSFET with a graphene nano-ribbon, and a method for manufacturing the same are provided. The MOSFET comprises an insulating substrate; and an oxide protection layer on the insulating substrate. At least one graphene nano-ribbon is embedded in the oxide protection layer and has a surface which is exposed at a side surface of the oxide protection layer. A channel region is provided in each of the at least one graphene nano-ribbon. A source region and a drain regions are provided in each of the at least one graphene nano-ribbon. The channel region is located between the source region and the drain region. A gate dielectric is positioned on the at least one graphene nano-ribbon. A gate conductor on the gate dielectric. A source and drain contacts contact the source region and the drain region respectively on the side surface of the oxide protection layer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: July 21, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Publication number: 20150200275
    Abstract: A FinFET with reduced leakage between source and drain regions, and a method for manufacturing the FinFET are disclosed. In one aspect, the method includes forming, on a semiconductor substrate, at least two openings to define a semiconductor fin. The method also includes forming a gate dielectric layer that conformally covers the fin and the openings. The method also includes forming, within the openings, a first gate conductor adjacent to the bottom of the fin. The method also includes forming, within the openings, an insulating isolation layer on the first gate conductor. The method also includes forming a second gate conductor on the fin and on the insulating isolation layer adjacent to the top of the fin. The method also includes forming spacers on sidewalls of the second gate conductor. The method also includes forming a source region and a drain region in the fin.
    Type: Application
    Filed: December 29, 2014
    Publication date: July 16, 2015
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang, Haizhou Yin
  • Publication number: 20150187942
    Abstract: The present invention discloses a semiconductor structure and a method for manufacturing the same, which comprises providing a substrate, and forming a stress layer, a buried oxide layer, and an SOI layer on the substrate; forming a doped region of the stress layer arranged in a specific position in the stress layer; forming an oxide layer and a nitride layer on the SOI layer, and forming a first trench that etches the nitride layer, the oxide layer, the SOI layer, and the buried oxide layer, and stops on the upper surface of the stress layer, and exposes at least part of the doped region of the stress layer; forming a cavity by wet etching through the first trench to remove the doped region of the stress layer; forming a polycrystalline silicon region of the stress layer and a second trench by filling the cavity with polycrystalline silicon and etching back; forming an isolation region by filling the second trench.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 2, 2015
    Applicant: Institute of Microelectronics, Chinese Academy of Science
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin, Qingqing Liang
  • Patent number: 9070719
    Abstract: A semiconductor device structure, a method for manufacturing the same, and a method for manufacturing a semiconductor fin are disclosed. In one embodiment, the method for manufacturing the semiconductor device structure comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction, the second direction crossing the first direction on the semiconductor substrate, and the gate line intersecting the fin with a gate dielectric layer sandwiched between the gate line and the fin; forming a dielectric spacer surrounding the gate line; and performing inter-device electrical isolation at a predetermined position, wherein isolated portions of the gate line form independent gate electrodes of respective devices.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 30, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Jun Luo, Chao Zhao
  • Patent number: 9064954
    Abstract: Semiconductor devices and methods for manufacturing the same are disclosed. In one embodiment, a method includes forming a first shielding layer on a substrate. The method further includes forming one of source and drain regions, which is stressed, with the first shielding layer as a mask. The method further includes forming a second shielding layer on the substrate, and forming the other of the source and drain regions with the second shielding layer as a mask. The method further includes removing a portion of the second shielding layer which is next to the other of the source and drain regions. The method further includes forming a gate dielectric layer, and forming a gate conductor as a spacer on a sidewall of a remaining portion of the second shielding layer.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: June 23, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Huicai Zhong
  • Patent number: 9059040
    Abstract: The present invention generally relates to a semiconductor structure and method, and more specifically, to a structure and method for reducing floating body effect of silicon on insulator (SOI) metal oxide semiconductor field effect transistors (MOSFETs). An integrated circuit (IC) structure includes an SOI substrate and at least one MOSFET formed on the SOI substrate. Additionally, the IC structure includes an asymmetrical source-drain junction in the at least one MOSFET by damaging a pn junction to reduce floating body effects of the at least one MOSFET.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qingqing Liang, Zhijiong Luo, Haizhou Yin, Huilong Zhu