Patents by Inventor Qintao Zhang

Qintao Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9728621
    Abstract: A method of manufacturing an integrated circuit is provided. According to the method, a layered fin including a plurality of sacrificial layers and semiconductor layers wherein two adjacent semiconductor layers are separated by the sacrificial layer is provided on a semiconductor substrate. A gate over the layered fin and a spacer surrounding a sidewall of the gate are then formed. The sacrificial layers are subsequently removed to provide a structure in which two adjacent semiconductor layers are separated by a gap. The method further includes forming an insulator in the gap and forming source and drain regions located on the layered fin. The insulator includes a high-K dielectric material surrounded by a low-K dielectric material, both of which are in contact with the two adjacent semiconductor layers.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: August 8, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Juntao Li, Geng Wang, Qintao Zhang
  • Patent number: 9659944
    Abstract: A one-time programmable memory (OTP) is provided that includes a combined word line programming line (WL-PL). The OTP includes a programmable transistor having a first threshold voltage and a first breakdown voltage, and a pass transistor having a second threshold voltage and a second breakdown voltage. The combined WL-PL is electrically connected to respective gate electrodes of both the programmable transistor and the pass transistor so that both receive the same control voltage. The second gate electrode has a work function that is greater than that of the first gate electrode, so that the second gate breakdown voltage is greater than the first gate breakdown voltage, which enables the use of the combined WL-PL.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 23, 2017
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Qintao Zhang, Mei Xue, Wenwei Yang, Akira Ito
  • Patent number: 9653480
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having a nanosheet capacitor by forming a first nanosheet stack over a substrate. The first nanosheet stack includes a first nanosheet vertically stacked over a second nanosheet. A second nanosheet stack is formed over the substrate adjacent to the first nanosheet stack. The second nanosheet stack includes a first nanosheet vertically stacked over a second nanosheet. Exposed portions of the first and second nanosheets of the second nanosheet stack are doped and gates are formed over channel regions of the first and second nanosheet stacks.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: May 16, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Juntao Li, Geng Wang, Qintao Zhang
  • Patent number: 9634014
    Abstract: A programmable cell includes a split gate structure. The split gate structure includes a thin gate dielectric region and a thick gate dielectric region disposed below a gate conductor. A thickness of the thick oxide region is more than a thickness of the thin oxide region. The programmable cell can be fabricated using angle doping to dope an area associated with the thin dielectric region.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: April 25, 2017
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Qintao Zhang, Akira Ito
  • Patent number: 9627511
    Abstract: A method of forming a spacer for a vertical transistor is provided. The method includes forming a fin structure that includes a fin on a semiconductor substrate, forming a source junction or a drain junction at an upper surface of the semiconductor substrate and at a base of the fin and epitaxially growing a rare earth oxide (REO) spacer to have a substantially uniform thickness along respective upper surfaces of the source or drain junction and on opposite sides of the fin structure.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Juntao Li, Geng Wang, Qintao Zhang
  • Publication number: 20170005093
    Abstract: A field effect transistor (FET) configuration is provided having a gate region with a split work function for the source-side and drain-side of the gate region. The work function of a material is defined as the minimum energy required to extract an electron from the surface of the material to free space. Accordingly, the source-side portion of the gate region has a first work function that less than a second work function of the drain-side portion, the result of which is increased breakdown voltage at the drain-gate interface, without significantly increasing the threshold voltage of the FET. The split work function is achieved by layering n-type gate material over p-type gate material in the drain-side portion of the gate region, while only the n-type gate material us used in the source-side portion of the gate region.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Applicant: Broadcom Corporation
    Inventors: Qintao ZHANG, Mei XUE, Wenwei YANG, Akira ITO
  • Publication number: 20170005103
    Abstract: A one-time programmable memory (OTP) is provided that includes a combined word line programming line (WL-PL). The OTP includes a programmable transistor having a first threshold voltage and a first breakdown voltage, and a pass transistor having a second threshold voltage and a second breakdown voltage. The combined WL-PL is electrically connected to respective gate electrodes of both the programmable transistor and the pass transistor so that both receive the same control voltage. The second gate electrode has a work function that is greater than that of the first gate electrode, so that the second gate breakdown voltage is greater than the first gate breakdown voltage, which enables the use of the combined WL-PL.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 5, 2017
    Applicant: Broadcom Corporation
    Inventors: Qintao ZHANG, Mei XUE, Wenwei YANG, Akira ITO
  • Patent number: 9536880
    Abstract: Methods of fabricating devices (e.g., FDSOI devices) having multiple threshold voltages are described. One method includes providing a first fixed charge region proximate to an interface of an insulating (e.g., buried oxide (BOX) layer) and a semiconductor substrate for a first device. The first charge region has a first configuration of fixed charges. The method also includes providing a second fixed charge region proximate to the interface of the insulating layer and the semiconductor substrate for the second device. The second charge region has a second configuration of fixed charges that is different than the first configuration.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: January 3, 2017
    Assignee: BROADCOM CORPORATION
    Inventors: Qintao Zhang, Aimin Xing
  • Patent number: 9472615
    Abstract: A fin-shaped field-effect transistor (finFET) device is provided. The finFET device includes a substrate material with a top surface and a bottom surface. The finFET device also includes a well region formed in the substrate material. The well region may include a first type of dopant. The finFET device also includes a fin structure disposed on the top surface of the substrate material. A portion of the fin structure may include the first type of dopant. The finFET device also includes an oxide material disposed on the top surface of the substrate material and adjacent to the portion of the fin structure. The finFET device also includes a first epitaxial material disposed over a portion of the fin structure. The first epitaxial material may include a second type of dopant.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: October 18, 2016
    Assignee: Broadcom Corporation
    Inventors: Qintao Zhang, Akira Ito
  • Publication number: 20160300838
    Abstract: Methods of fabricating devices (e.g., FDSOI devices) having multiple threshold voltages are described. One method includes providing a first fixed charge region proximate to an interface of an insulating (e.g., buried oxide (BOX) layer) and a semiconductor substrate for a first device. The first charge region has a first configuration of fixed charges. The method also includes providing a second fixed charge region proximate to the interface of the insulating layer and the semiconductor substrate for the second device. The second charge region has a second configuration of fixed charges that is different than the first configuration.
    Type: Application
    Filed: May 5, 2015
    Publication date: October 13, 2016
    Applicant: Broadcom Corporation
    Inventors: Qintao Zhang, Aimin Xing
  • Publication number: 20160276355
    Abstract: A programmable cell includes a split gate structure. The split gate structure includes a thin gate dielectric region and a thick gate dielectric region disposed below a gate conductor. A thickness of the thick oxide region is more than a thickness of the thin oxide region. The programmable cell can be fabricated using angle doping to dope an area associated with the thin dielectric region.
    Type: Application
    Filed: April 21, 2015
    Publication date: September 22, 2016
    Applicant: BROADCOM CORPORATION
    Inventors: Qintao Zhang, Akira Ito
  • Publication number: 20160190281
    Abstract: An MOS device with increased drain-source voltage (Vds) includes a source region and a drain region deposited on a substrate. A gate region includes an inner spacer that extends the drain region. The inner spacer is formed attached to an isolation spacer that isolates the drain region from the gate region. The inner spacer is configured to extend the drain region to modify an electric field in a portion of a conductive band of the MOS device.
    Type: Application
    Filed: January 30, 2015
    Publication date: June 30, 2016
    Inventors: Qintao Zhang, Shom Surendran Ponoth, Akira Ito
  • Patent number: 9379212
    Abstract: An MOS device with increased drain-source voltage (Vds) includes a source region and a drain region deposited on a substrate. A gate region includes an inner spacer that extends the drain region. The inner spacer is formed attached to an isolation spacer that isolates the drain region from the gate region. The inner spacer is configured to extend the drain region to modify an electric field in a portion of a conductive band of the MOS device.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 28, 2016
    Assignee: BROADCOM CORPORATION
    Inventors: Qintao Zhang, Shom Surendran Ponoth, Akira Ito
  • Publication number: 20160181358
    Abstract: A fin-shaped field-effect transistor (finFET) device is provided. The finFET device includes a substrate material with a top surface and a bottom surface. The finFET device also includes a well region formed in the substrate material. The well region may include a first type of dopant. The finFET device also includes a fin structure disposed on the top surface of the substrate material. A portion of the fin structure may include the first type of dopant. The finFET device also includes an oxide material disposed on the top surface of the substrate material and adjacent to the portion of the fin structure. The finFET device also includes a first epitaxial material disposed over a portion of the fin structure. The first epitaxial material may include a second type of dopant.
    Type: Application
    Filed: January 15, 2015
    Publication date: June 23, 2016
    Inventors: Qintao ZHANG, Akira ITO
  • Patent number: 9171935
    Abstract: A FinFET semiconductor device fabrication process includes forming a plurality of FinFET fins upon a semiconductor substrate, forming a first dielectric layer upon the semiconductor substrate so that an upper surface of the first dielectric layer is coplanar with upper surfaces of the FinFET fins, forming a plurality of dummy gates upon the FinFET fins and the first dielectric layer orthogonal to the FinFET fins, revealing the FinFET fins by removing first portions of the first dielectric layer from source-drain regions, removing the dummy gates, and subsequent to the removal of the dummy gates, revealing the FinFET fins by removing second portions of the first dielectric layer from channel regions.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: October 27, 2015
    Assignee: GlobalFoundries Inc.
    Inventors: Seong-Dong Kim, Myung-Hee Na, Jin Z. Wallner, Thomas A. Wallner, Qintao Zhang
  • Publication number: 20150255569
    Abstract: A FinFET semiconductor device fabrication process includes forming a plurality of FinFET fins upon a semiconductor substrate, forming a first dielectric layer upon the semiconductor substrate so that an upper surface of the first dielectric layer is coplanar with upper surfaces of the FinFET fins, forming a plurality of dummy gates upon the FinFET fins and the first dielectric layer orthogonal to the FinFET fins, revealing the FinFET fins by removing first portions of the first dielectric layer from source-drain regions, removing the dummy gates, and subsequent to the removal of the dummy gates, revealing the FinFET fins by removing second portions of the first dielectric layer from channel regions.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 10, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Seong-Dong Kim, Myung-Hee Na, Jin Z. Wallner, Thomas A. Wallner, Qintao Zhang