Patents by Inventor Qiuxia Xu

Qiuxia Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130241004
    Abstract: The present invention discloses a semiconductor device, comprising substrates, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer; Each of the second gate stack structures comprises a second gate insulating layer, a first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the first work function metal layer has a first stress, and the gate filling layer has a second stress.
    Type: Application
    Filed: April 11, 2012
    Publication date: September 19, 2013
    Inventors: Huaxiang Yin, Zuozhen Fu, Qiuxia Xu, Chao Zhao, Dapeng Chen
  • Publication number: 20130240996
    Abstract: The present invention discloses a semiconductor device, comprising a substrate, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer, the work function is close to the valence band (conduction band) edge; each of the second gate stack structures comprises a second gate insulating layer, a modified first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the second work function metal layer comprises implanted work function-regu
    Type: Application
    Filed: April 11, 2012
    Publication date: September 19, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Chao Zhao, Dapeng Chen
  • Patent number: 8530302
    Abstract: A method for manufacturing a CMOS FET comprises forming a first interfacial SiO2 layer on a semiconductor substrate after formation a conventional dielectric isolation; forming a stack a first high-K gate dielectric/a first metal gate; depositing a first hard mask; patterning the first hard mask by lithography and etching; etching the portions of the first metal gate and the first high-K gate dielectric that are not covered by the first hard mask. A second interfacial SiO2 layer and a stack of a second high-K gate dielectric/a second metal gate are then formed; a second hard mask is deposited and patterned by lithograph and etching; the portions of the second metal gate and the second high-K gate dielectric that are not covered by the second hard mask are etched to expose the first hard mask on the first metal gate.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 10, 2013
    Assignee: The Institute of Microelectronics, Chinese Academy of Science
    Inventors: Qiuxia Xu, Yongliang Li, Gaobo Xu
  • Patent number: 8466028
    Abstract: A method for manufacturing a multigate device is provided, comprising: providing a semiconductor substrate; etching the semiconductor substrate to form a protruding fin; etching the semiconductor substrate at the bottom of the fin so as to form a gap between the fin and the semiconductor substrate; forming a dielectric layer which covers the semiconductor substrate and the fin and fills the gap; and etching the dielectric layer so as to expose the top and a portion of sidewalls of the fin. The present invention can realize isolation between fins with a simple process, which costs relatively low and is suitable for massive industrial application.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: June 18, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Publication number: 20130134515
    Abstract: The present application discloses a semiconductor Field-Effect Transistor (FET) structure and a method for manufacturing the same, wherein the method comprises: forming a semiconductor substrate comprising an SOI structure having a body-contact hole; forming a fin on the SOI structure of the semiconductor substrate; forming a gate stack structure on top and side faces of the fin; forming source/drain structures in the fin on both sides of the gate stack structure; and performing metallization. The present invention makes use of traditional quasi-planar based top-down processes, thus the manufacturing process thereof becomes simple to implement; the present invention exhibits good compatibility with CMOS planar process and can be easily integrated; the present invention also is favorable for suppressing short channel effects desirably, and boosts MOSFETs to develop towards a trend of downscaling size.
    Type: Application
    Filed: December 1, 2011
    Publication date: May 30, 2013
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huajie Zhou, Qiuxia Xu
  • Publication number: 20130137264
    Abstract: A semiconductor device manufacturing method, comprising: providing a semiconductor substrate, on which a gate conductor layer as well as a source region and a drain region positioned on both sides of the gate conductor layer are provided, forming an etch stop layer on the semiconductor substrate, forming an LTO layer on the etch stop layer, chemical mechanical polishing the LTO layer, forming an SOG layer on the polished LTO layer, the etch stop layer, LTO layer and SOG layer forming a front metal insulating layer, back etching the SOG layer and etch stop layer of the front metal insulating layer to expose the gate conductor layer, and removing the gate conductor layer.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Lingkuan Meng, Dapeng Chen
  • Publication number: 20130134516
    Abstract: The present application discloses a semiconductor device structure and a method for manufacturing the same, wherein the method comprises: forming a semiconductor substrate comprising a local SOI structure having a local buried isolation dielectric layer; forming a fin on the silicon substrate on top of the local buried isolation dielectric layer; forming a gate stack structure on the top and side faces of the fin; forming source/drain structures in the fin on both sides of the gate stack structure; and performing metallization. The present invention makes use of traditional quasi-planar based top-down processes, thus the manufacturing process thereof is simple to implement; the present invention exhibits good compatibility with CMOS planar process and can be easily integrated, therefore, short channel effects are suppressed desirably, and MOSFETs are boosted to develop towards a trend of downscaling size.
    Type: Application
    Filed: December 1, 2011
    Publication date: May 30, 2013
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huajie Zhou, Qiuxia Xu
  • Publication number: 20130130448
    Abstract: The present disclosure provides a method for forming and controlling a molecular level SiO2 interface layer, mainly comprising: cleansing before growing the SiO2 interface layer, growing the molecular level ultra-thin SiO2 interface layer; and controlling reaction between high-K gate dielectric and the SiO2 interface layer to further reduce the SiO2 interface layer. The present disclosure can strictly prevent invasion of oxygen during process integration. The present disclosure can obtain a good-quality high-K dielectric film having a small EOT. The manufacturing process is simple and easy to integrate. It is also compatible with planar CMOS process, and can satisfy requirement of high-performance nanometer level CMOS metal gate/high-K device of 45 nm node and below.
    Type: Application
    Filed: February 28, 2012
    Publication date: May 23, 2013
    Inventors: Qiuxia Xu, Gaobo Xu
  • Publication number: 20130105906
    Abstract: The present invention relates to a CMOS device having dual metal gates and a method of manufacturing the same.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 2, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Publication number: 20130105907
    Abstract: The present invention relates to a MOS device and method of manufacturing the same. The device comprises a semiconductor substrate; a channel formed in the semiconductor substrate; a gate stack formed on the channel and a spacer surrounding the gate stack; and source and drain regions formed in the substrates on both sides of the spacer; wherein the gate stack is comprised of an insulating layer and a multi-layer metal gate formed thereon, the multi-layer metal gate is comprised of a strained metal layer for introducing a stress to the channel and a work function regulating layer for regulating the work function of the metal gate, and the work function regulating layer surrounds the strained metal layer from the bottom and sides. The multi-layer metal gate structure overcomes the defect incurred by the fact that a conventional strained metal gate material can not achieve both regulation of work function and effect of application of strain be optimized at the same time.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 2, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Publication number: 20130099328
    Abstract: The present application provides a p-type semiconductor device and a method for manufacturing the same. The structure of the device comprises: a semiconductor substrate; a channel region positioned in the semiconductor substrate; a gate stack which is positioned on the channel region comprising a gate dielectric layer and a gate electrode, wherein the gate dielectric layer is positioned on the channel region and the gate electrode is positioned on the gate dielectric layer; and source/drain regions positioned at the two sides of the channel region and embedded into the semiconductor substrate; wherein the element Al is distributed in at least one of the upper surface, the bottom surface of the gate dielectric layer and the bottom surface of the gate electrode. The embodiments of the present invention are applicable for manufacturing MOSFET.
    Type: Application
    Filed: February 27, 2011
    Publication date: April 25, 2013
    Inventors: Gaobo Xu, Qiuxia Xu
  • Publication number: 20130082362
    Abstract: A semiconductor device and its manufacturing method, wherein the NMOS device is covered by a layer of silicon nitride film having a high ultraviolet light absorption coefficient through PECVD, said silicon nitride film can well absorb ultraviolet light when being subject to the stimulated laser surface anneal so as to achieve a good dehydrogenization effect, and after dehydrogenization, the silicon nitride film will have a high tensile stress; since the silicon nitride film has a high ultraviolet light absorption coefficient, there is no need to heat the substrate, thus avoiding the adverse influences to the device caused by heating the substrate to dehydrogenize, and maintaining the heat budget brought about by the PECVD process.
    Type: Application
    Filed: November 25, 2011
    Publication date: April 4, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Publication number: 20130078773
    Abstract: A method for manufacturing a CMOS FET comprises forming a first interfacial SiO2 layer on a semiconductor substrate after formation a conventional dielectric isolation; forming a stack a first high-K gate dielectric/a first metal gate; depositing a first hard mask; patterning the first hard mask by lithography and etching; etching the portions of the first metal gate and the first high-K gate dielectric that are not covered by the first hard mask. A second interfacial SiO2 layer and a stack of a second high-K gate dielectric/a second metal gate are then formed; a second hard mask is deposited and patterned by lithograph and etching; the portions of the second metal gate and the second high-K gate dielectric that are not covered by the second hard mask are etched to expose the first hard mask on the first metal gate.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 28, 2013
    Inventors: Qiuxia Xu, Yongliang Li, Gaobo Xu
  • Patent number: 8389367
    Abstract: The present application discloses a method for manufacturing a semiconductor device, comprising: forming a local buried isolation dielectric layer in a semiconductor substrate; forming a fin in the semiconductor substrate and on top of the local buried isolation dielectric layer; forming a gate stack structure on a top surface and side surfaces of the fin; forming source/drain structures in portions of the fin which are on opposite sides of the gate stack structure; and performing metallization. A conventional quasi-planar top-down process is utilized in the present invention to achieve a good compatibility with the CMOS planar processes, easy integration, and suppression of short channel effects, which promotes the development of MOSFETs having reduced sizes.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: March 5, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huajie Zhou, Qiuxia Xu
  • Patent number: 8384162
    Abstract: The present invention relates to a device having adjustable channel stress and method thereof. There is provided an MOS device (200, 300), comprising a semiconductor substrate (202, 302); a channel formed on the semiconductor substrate (202, 302); a gate dielectric layer (204, 304) formed on the channel; a gate conductor (206, 306) formed on the gate dielectric layer (204, 304); and a source and a drain formed on both sides of the gate; wherein the gate conductor (206, 306) has a shape for producing a first stress to be applied to the channel so as to adjust the mobility of carriers in the channel. In the present invention, the shape of the gate conductor may be adjusted by controlling the etching process parameter, thus the stress in the channel may be adjusted conveniently, meanwhile, it may be used in combination with other mechanisms that generate stresses to obtain the desired channel stress.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: February 26, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Patent number: 8377769
    Abstract: A method for integrating a replacement gate in a semiconductor device is disclosed.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: February 19, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Gaobo Xu, Qiuxia Xu
  • Publication number: 20130037822
    Abstract: A semiconductor device and its manufacturing method are provided. The semiconductor device comprises: a semiconductor substrate of a first semiconductor material, a gate structure on the semiconductor substrate, a crystal lattice dislocation line in a channel under the gate structure for generating channel stress, wherein the crystal lattice dislocation line being at an angle to the channel.
    Type: Application
    Filed: November 25, 2011
    Publication date: February 14, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Patent number: 8367558
    Abstract: A method for tuning the work function of a metal gate of the PMOS device is disclosed. The method comprises depositing a layer of metal nitride or a metal on a layer of high-k gate dielectric by physical vapor deposition (PVD), as a metal gate; doping the metal gate with dopants such as Al, Pt, Ru, Ga, Ir by ion implantation; and driving the doped metal ions to the interface between the high-k gate dielectric and interfacial SiO2 by high-temperature annealing so that the doped metal ions accumulate at the interface or generate dipoles by interfacial reaction, which in turn tunes the work function of the metal gate. The method can be widely used and its process is simple and convenient, has a better ability of tuning the work function of the metal gate, and is compatible with the conventional CMOS process.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 5, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qiuxia Xu, Gaobo Xu
  • Publication number: 20130026496
    Abstract: A method for manufacturing a semiconductor device, comprising forming a tunneling dielectric layer, a storage dielectric layer, a gate dielectric layer and a gate layer sequentially on a semiconductor substrate of a first semiconductor material; patterning the tunneling dielectric layer, the storage dielectric layer, the gate dielectric layer and the gate layer to form a gate stack; forming a groove in the semiconductor substrate on the sides of the gate stack; filling the groove with a second semiconductor material different from the first semiconductor material, meanwhile, the entire device is covered by the dielectric layer. The surface energy level in the channel is made to change by the stress generated by the second semiconductor material and the covering dielectric layer, thereby increasing tunneling current and improving the storage efficiency of the device.
    Type: Application
    Filed: November 28, 2011
    Publication date: January 31, 2013
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Patent number: 8361869
    Abstract: The present application discloses a method for manufacturing a gate-all-around field effect transistor, comprising the steps of: forming a suspended fin in a semiconductor substrate; forming a gate stack around the fin; and forming source/drain regions in the fin on both sides of the gate stack, wherein an isolation dielectric layer is formed in a portion of the semiconductor substrate which is adjacent to bottom of both the fin and the gate stack. The present invention relates to a method for manufacturing a gate-all-around device on a bulk silicon substrate, which suppress a self-heating effect and a floating-body effect of the SOI substrate, and lower a manufacture cost. The inventive method is a conventional top-down process with respect to a reference plane, which can be implemented as a simple manufacture process, and is easy to be integrated into and compatible with a planar CMOS process. The inventive method suppresses a short channel effect and promotes miniaturization of MOSFETs.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 29, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huajie Zhou, Yi Song, Qiuxia Xu