Patents by Inventor Quentin P. Herr

Quentin P. Herr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9281057
    Abstract: One embodiment describes a memory cell. The memory cell includes a phase hysteretic magnetic Josephson junction (PHMJJ) that is configured to store one of a first binary logic state corresponding to a binary logic-1 state and a second binary logic state corresponding to a binary logic-0 state in response to a write current that is provided to the memory cell and to generate a superconducting phase based on the stored digital state. The memory cell also includes a superconducting read-select device that is configured to implement a read operation in response to a read current that is provided to the memory cell. The memory cell further includes at least one Josephson junction configured to provide an output based on the superconducting phase of the PHMJJ during the read operation, the output corresponding to the stored digital state.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: March 8, 2016
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Anna Y. Herr, Quentin P. Herr, Andrew Hostetler Miklich
  • Publication number: 20160034609
    Abstract: Systems and methods are provided for physical layout of superconductor circuits. The physical layout system and method is configured to place and route the superconducting circuits by first placing the gates in the form of gate tiles within unoccupied areas of a predetermined circuit design based on a netlist. Each gate tile type includes a particular gate type and a plurality of unassigned Josephson junctions that can be employed in the gates and/or the active interconnects. Inductive wires are then routed between gates incorporating and assigning the Josephson junctions to produce active interconnects between the I/O terminals of the gates based on connections defined in the netlist.
    Type: Application
    Filed: August 1, 2014
    Publication date: February 4, 2016
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: ANNA Y. HERR, Quentin P. Herr
  • Publication number: 20160013791
    Abstract: One embodiment includes a superconductive gate system. The superconductive gate system includes a Josephson D-gate circuit comprising a bi-stable loop configured to store a digital state as one of a first data state and a second data state in response to an enable single flux quantum (SFQ) pulse provided on an enable input and a respective presence of or absence of a data SFQ pulse provided on a data input. The digital state can be provided at an output. The readout circuit is coupled to the output and can be configured to reproduce the digital state as an output signal.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 14, 2016
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: ANNA Y. HERR, QUENTIN P. HERR
  • Patent number: 9208861
    Abstract: One embodiment describes a memory cell. The memory cell includes a phase hysteretic magnetic Josephson junction (PHMJJ) that is configured to store one of a first binary logic state corresponding to a binary logic-1 state and a second binary logic state corresponding to a binary logic-0 state in response to a write current and to generate a superconducting phase based on the stored digital state. The memory cell also includes at least one Josephson junction having a critical current that is based on the superconducting phase of the PHMJJ and being configured to provide an output corresponding to the stored digital state in response to a read current.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: December 8, 2015
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Anna Y. Herr, Quentin P. Herr, Ofer Naaman
  • Patent number: 9174840
    Abstract: One embodiment describes an AC/DC converter system. The system includes a flux-shuttle loop that is inductively coupled with an AC input signal. The system also includes a plurality of Josephson junctions spaced about the flux shuttle loop that are configured to sequentially trigger in response to the AC input signal and to provide a single-flux quantum (SFQ) pulse that moves sequentially around the flux-shuttle loop that results in a DC output signal being provided through an output inductor.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: November 3, 2015
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Quentin P. Herr, Anna Y. Herr
  • Publication number: 20150263736
    Abstract: Systems and methods are provided for applying flux to a quantum-coherent superconducting circuit. In one example, a system includes a long-Josephson junction (LJJ), an inductive loop coupled to the LJJ and inductively coupled to the quantum-coherent superconducting circuit, and a single flux quantum (SFQ) controller configured to apply a SFQ pulse to a first end of the LJJ that propagates the SFQ pulse to a second end of the LJJ, while also applying a flux quantum to the inductive loop resulting in a first value of control flux being applied to the quantum-coherent superconducting circuit.
    Type: Application
    Filed: August 14, 2012
    Publication date: September 17, 2015
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Quentin P. HERR, Ofer NAAMAN, Anna Y. HERR
  • Publication number: 20150094207
    Abstract: One embodiment describes a memory cell. The memory cell includes a phase hysteretic magnetic Josephson junction (PHMJJ) that is configured to store one of a first binary logic state corresponding to a binary logic-1 state and a second binary logic state corresponding to a binary logic-0 state in response to a write current and to generate a superconducting phase based on the stored digital state. The memory cell also includes at least one Josephson junction having a critical current that is based on the superconducting phase of the PHMJJ and being configured to provide an output corresponding to the stored digital state in response to a read current.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Anna Y. Herr, Quentin P. Herr, Ofer Naaman
  • Publication number: 20150092465
    Abstract: One embodiment describes an AC/DC converter system. The system includes a flux-shuttle loop that is inductively coupled with an AC input signal. The system also includes a plurality of Josephson junctions spaced about the flux shuttle loop that are configured to sequentially trigger in response to the AC input signal and to provide a single-flux quantum (SFQ) pulse that moves sequentially around the flux-shuttle loop that results in a DC output signal being provided through an output inductor.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Quentin P. Herr, Anna Y. Herr
  • Patent number: 8610453
    Abstract: Superconducting single flux quantum circuits are disclosed herein, each having at least one Josephson junction which will flip when the current through it exceeds a critical current. Bias current for the Josephson junction is provided by a biasing transformer instead of a resistor. The lack of any bias resistors ensures that unwanted power dissipation is eliminated.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 17, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Quentin P. Herr
  • Patent number: 8489163
    Abstract: A reciprocal quantum logic (RQL) latch system is provided. The latch system comprises an output portion that retains a state of the latch system, and a bi-stable loop that comprises a set input, a reset input and an output coupled to the output portion. A positive single flux quantum (SFQ) pulse on the set input when the latch system is in a reset state results in providing a SFQ current in the output portion representative of the latch system being in a set state.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: July 16, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Quentin P. Herr, Anna Y. Herr
  • Publication number: 20130040818
    Abstract: A reciprocal quantum logic (RQL) latch system is provided. The latch system comprises an output portion that retains a state of the latch system, and a bi-stable loop that comprises a set input, a reset input and an output coupled to the output portion. A positive single flux quantum (SFQ) pulse on the set input when the latch system is in a reset state results in providing a SFQ current in the output portion representative of the latch system being in a set state.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Inventors: Quentin P. Herr, Anna Y. Herr
  • Patent number: 8270209
    Abstract: One aspect of the present invention includes a Josephson magnetic random access memory (JMRAM) system. The system includes an array of memory cells arranged in rows and columns. Each of the memory cells includes an HMJJD that is configured to store a digital state corresponding to one of a binary logic-1 state and a binary logic-0 state in response to a word-write current that is provided on a word-write line and a bit-write current that is provided on a bit-write line. The HMJJD is also configured to output the respective digital state in response to a word-read current that is provided on a word-read line and a bit-read current that is provided on a bit-read line.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: September 18, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Anna Y. Herr, Quentin P. Herr
  • Patent number: 8138784
    Abstract: In one embodiment, the disclosure relates to a method and apparatus for controlling the energy state of a qubit by bringing the qubit into and out of resonance by coupling the qubit to a flux quantum logic gate. The qubit can be in resonance with a pump signal, with another qubit or with some quantum logic gate. In another embodiment, the disclosure relates to a method for controlling a qubit with RSFQ logic or through the interface between RSFQ and the qubit.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: March 20, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventors: John Xavier Przybysz, James E. Baumgardner, Aaron A. Pesetski, Donald Lynn Miller, Quentin P. Herr
  • Publication number: 20110267878
    Abstract: One aspect of the present invention includes a Josephson magnetic random access memory (JMRAM) system. The system includes an array of memory cells arranged in rows and columns. Each of the memory cells includes an HMJJD that is configured to store a digital state corresponding to one of a binary logic-1 state and a binary logic-0 state in response to a word-write current that is provided on a word-write line and a bit-write current that is provided on a bit-write line. The HMJJD is also configured to output the respective digital state in response to a word-read current that is provided on a word-read line and a bit-read current that is provided on a bit-read line.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Inventors: Anna Y. Herr, Quentin P. Herr
  • Publication number: 20110254583
    Abstract: Superconducting single flux quantum circuits are disclosed herein, each having at least one Josephson junction which will flip when the current through it exceeds a critical current. Bias current for the Josephson junction is provided by a biasing transformer instead of a resistor. The lack of any bias resistors ensures that unwanted power dissipation is eliminated.
    Type: Application
    Filed: June 23, 2011
    Publication date: October 20, 2011
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventor: Quentin P. Herr
  • Patent number: 7982646
    Abstract: A second order superconductor delta-sigma analog-to-digital modulator having an input for receiving an analog signal, a first integrator coupled to the input, a second integrator cascaded with the first integrator, and a quantum comparator digitizing output from the second integrator reduces quantization noise by providing matched quantum accurate DACs in a feedback loop between output from the quantum comparator and input to the first integrator. The matched quantum accurate feedback DACs produce identically repeatable voltage pulses, may be configured for multi-bit output, may be time-interleaved to permit higher clocking rates, and may be employed in a balanced bipolar configuration to allow inductive input coupling. Bipolar feedback is balanced when gain of a first DAC exceeds gain of a matched, opposite polarity DAC by the amount of implicit feedback from the comparator into the second integrator.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: July 19, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Quentin P. Herr, Aaron A. Pesetski, John X. Przybysz, Donald L. Miller
  • Patent number: 7977964
    Abstract: Superconducting single flux quantum circuits are disclosed herein, each having at least one Josephson junction which will flip when the current through it exceeds a critical current. Bias current for the Josephson junction is provided by a biasing transformer instead of a resistor. The lack of any bias resistors ensures that unwanted power dissipation is eliminated.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: July 12, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Quentin P. Herr
  • Publication number: 20110133770
    Abstract: In one embodiment, the disclosure relates to a method and apparatus for controlling the energy state of a qubit by bringing the qubit into and out of resonance by coupling the qubit to a flux quantum logic gate. The qubit can be in resonance with a pump signal, with another qubit or with some quantum logic gate. In another embodiment, the disclosure relates to a method for controlling a qubit with RSFQ logic or through the interface between RSFQ and the qubit.
    Type: Application
    Filed: February 7, 2011
    Publication date: June 9, 2011
    Inventors: John Xavier PRZYBYSZ, James E. Baumgardner, Aaron A. Pesetski, Donald Lynn Miller, Quentin P. Herr
  • Patent number: 7868645
    Abstract: In one embodiment, the disclosure relates to a single flux quantum (SFQ) signal transmission line powered by an AC power source. The AC power source supplies power to a transformer having a primary winding and a secondary winding. The primary winding receives the AC signal and the secondary winding communicates the signal to the SFQ transmission line. The transmission line can optionally include an input filter circuit for receiving the incoming SFQ pulse. The filter circuit can have a resistor and an inductor connected in parallel. In an alternative arrangement, the filter circuit can comprise of an inductor. A first Josephson junction can be connected to the filter circuit and to the secondary winding. The Josephson junction triggers in response to the incoming SFQ pulse and regenerates a pulse signal in response to a power discharge from the secondary winding.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: January 11, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Quentin P. Herr, James E. Baumgardner, Anna Y. Herr
  • Patent number: 7852106
    Abstract: In one embodiment, the disclosure relates to a single flux quantum (SFQ) signal transmission line powered by an AC power source. The AC power source supplies power to a transformer having a primary winding and a secondary winding. The primary winding receives the AC signal and the secondary winding communicates the signal to the SFQ transmission line. The transmission line can optionally include an input filter circuit for receiving the incoming SFQ pulse. The filter circuit can have a resistor and an inductor connected in parallel. In an alternative arrangement, the filter circuit can comprise of an inductor. A first Josephson junction can be connected to the filter circuit and to the secondary winding. The Josephson junction triggers in response to the incoming SFQ pulse and regenerates a pulse signal in response to a power discharge from the secondary winding.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: December 14, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Quentin P. Herr, James E. Baumgardner, Anna Y. Herr