Patents by Inventor R. Knapp

R. Knapp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240391194
    Abstract: A system to manufacture a tire includes one or more processors and one or more memories storing instructions executable by the one or more processors and causing the one or more processors to receive, from one or more sensors of one or more pieces of tire manufacturing equipment, one or more values corresponding to manufacturing of a tire, generate a matrix based on the one or more values, predict, via input of the matrix into a machine learning model, a value for a splice tolerance metric for the tire, determine, based on the value for the splice tolerance metric, a first parameter of a first piece of the one or more pieces of tire manufacturing equipment to adjust, and provide a command to adjust the first parameter of the first piece of equipment responsive to determining the value of the splice tolerance metric.
    Type: Application
    Filed: August 1, 2024
    Publication date: November 28, 2024
    Applicant: BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC
    Inventors: Kevin R. Knapp, Anirban K. Bhattacharjee
  • Publication number: 20240052136
    Abstract: Flexible ceramic composite materials that include a polymer and silica aerogel disposed within the polymer are disclosed. The materials have extremely low thermal conductivity and excellent thermal stability and can be used to form seals, gaskets, and insulation for a variety of applications.
    Type: Application
    Filed: June 8, 2020
    Publication date: February 15, 2024
    Applicant: MID MOUNTAIN MATERIALS, INC.
    Inventors: John R. Knapp, Amulya Das
  • Patent number: 11328834
    Abstract: A method of fabricating a transparent conductor is provided. The method includes forming a nanowire dispersion layer on a substrate, forming a nanowire network layer on the substrate by drying the nanowire dispersion layer, and forming a matrix material layer on the nanowire network layer.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: May 10, 2022
    Assignee: Cambrios Film Solutions Corporation
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Patent number: 11162910
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: November 2, 2021
    Assignees: CALIPER LIFE SCIENCES, INC., Canon U.S.A., Inc.
    Inventors: Steven A. Sundberg, Michael R. Knapp, Ivor T. Knight, Deborah J. Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Edward Donlon, Robert Moti, Michael Slater
  • Patent number: 10871460
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: December 22, 2020
    Assignee: Canon U.S.A., Inc.
    Inventors: Ivor T. Knight, Deborah John Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edward Donlon, Robert Moti, Michael Slater, Steven A. Sundberg, Michael R. Knapp
  • Publication number: 20200161017
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Patent number: 10580549
    Abstract: A method of fabricating a transparent conductor includes the following steps. The first step is drawing a substrate from a first reel to a second reel along a travelling path, and along the travelling path. Next step is forming a metal nanowire dispersion layer on the substrate and then drying the metal nanowire dispersion layer to form a metal nanowire network layer. Next step is forming a matrix layer on the metal nanowire network layer so as to form a conductive layer of the metal nanowire network layer embedded in the matrix layer.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: March 3, 2020
    Assignee: Cambrios Film Solutions Corporation
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Patent number: 10428377
    Abstract: Methods are provided for detecting low copy nucleic acids of interest in a sample. In one method, a sample comprising a nucleic acid of interest is aliquotted into a plurality of reaction mixtures, at least two of which are single-copy reaction mixtures. The reaction mixtures are subjected to one or more amplification reactions while flowing through a channel of a microfluidic device. At least one of the reaction mixtures is formulated in an aqueous phase of an emulsion comprising aqueous droplets suspended in an immiscible liquid. The nucleic acid of interest is present as a single copy in at least one aqueous droplet of the aqueous phase prior to performing the amplification reaction(s). Amplification is performed on the reaction mixture when it is formulated in the emulsion. The nucleic acid is continuously flowed during a plurality of steps of the method.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: October 1, 2019
    Assignee: CALIPER LIFE SCIENCES, INC.
    Inventors: Michael R. Knapp, Jill M. Baker, Andrea W. Chow, Anne R. Kopf-Sill, Michael Spaid
  • Patent number: 10138517
    Abstract: An array of transportable particle sets is used in a microfluidic device for performing chemical reactions in the microfluidic device. The microfluidic device comprises a main channel and intersecting side channels, the main channel and side channels forming a plurality of intersections. The array of particle sets is disposed in the main channel, and the side channels are coupled to reagents. As the particle sets are transported through the intersections of the main channel and the side channels, reagents are flowed through the side channels into contact with each array member (or selected array members), thereby providing a plurality of chemical reactions in the microfluidic system.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: November 27, 2018
    Assignee: CALIPER LIFE SCIENCES, INC.
    Inventors: Tammy Burd Mehta, Anne R. Kopf-Sill, J. Wallace Parce, Andrea W. Chow, Luc J. Bousse, Michael R. Knapp, Theo T. Nikiforov, Steve Gallagher
  • Publication number: 20180321170
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 8, 2018
    Applicants: Canon U.S. Life Sciences, Inc., CALIPER LIFE SCIENCES, INC.
    Inventors: Ivor T. Knight, Deborah John Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edward Donlon, Robert Moti, Michael Slater, Steven A. Sundberg, Michael R. Knapp
  • Publication number: 20180218802
    Abstract: A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires which may be embedded in a matrix. The conductive layer is optically transparent and flexible. It can be coated or laminated onto a variety of substrates, including flexible and rigid substrates.
    Type: Application
    Filed: January 15, 2018
    Publication date: August 2, 2018
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Patent number: 9983155
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 29, 2018
    Assignees: Canon U.S. Life Sciences, Inc., CALIPER LIFE SCIENCES, INC.
    Inventors: Ivor T. Knight, Deborah John Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edward Donlon, Robert Moti, Michael Slater, Steven A. Sundberg, Michael R. Knapp
  • Patent number: 9899123
    Abstract: A method for forming a transparent conductor including a conductive layer coated on a substrate is described. The method comprises depositing a plurality of metal nanowires on a surface of a substrate, the metal nanowires being dispersed in a liquid; and forming a metal nanowire network layer on the substrate by allowing the liquid to dry.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: February 20, 2018
    Inventors: Jonathan S. Alden, Haixia Dai, Michael R. Knapp, Shuo Na, Hash Pakbaz, Florian Pschenitzka, Xina Quan, Michael A. Spaid, Adrian Winoto, Jeffrey Wolk
  • Patent number: 9881698
    Abstract: The systems and methods described herein relate to the use of electrostatic elements to confine and circulate ions in trapped orbits so as to facilitate ion-ion and ion-neutral collisions resulting in nuclear fusion reactions. The systems employ a disc shaped cloud of ions wherein the turning region for the recirculating ions are located in a circular space around the periphery of the disc-shaped ion cloud, thereby maximizing the turning space region to increase the number of ions trapped in the device compared to discrete beam devices, which in turn enables higher fusion yield compared to prior art devices.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: January 30, 2018
    Inventor: Daniel R Knapp
  • Publication number: 20170356040
    Abstract: An array of transportable particle sets is used in a microfluidic device for performing chemical reactions in the microfluidic device. The microfluidic device comprises a main channel and intersecting side channels, the main channel and side channels forming a plurality of intersections. The array of particle sets is disposed in the main channel, and the side channels are coupled to reagents. As the particle sets are transported through the intersections of the main channel and the side channels, reagents are flowed through the side channels into contact with each array member (or selected array members), thereby providing a plurality of chemical reactions in the microfluidic system.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 14, 2017
    Inventors: Tammy Burd Mehta, Anne R. Kopf-Sill, J. Wallace Parce, Andrea W. Chow, Luc J. Bousse, Michael R. Knapp, Theo T. Nikiforov, Steve Gallagher
  • Patent number: 9670541
    Abstract: An array of transportable particle sets is used in a microfluidic device for performing chemical reactions in the microfluidic device. The microfluidic device comprises a main channel and intersecting side channels, the main channel and side channels forming a plurality of intersections. The array of particle sets is disposed in the main channel, and the side channels are coupled to reagents. As the particle sets are transported through the intersections of the main channel and the side channels, reagents are flowed through the side channels into contact with each array member (or selected array members), thereby providing a plurality of chemical reactions in the microfluidic system.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: June 6, 2017
    Assignee: CALIPER LIFE SCIENCES, INC.
    Inventors: Tammy Burd Mehta, Anne R. Kopf-Sill, J. Wallace Parce, Andrea W. Chow, Luc J. Bousse, Michael R. Knapp, Theo T. Nikiforov, Steve Gallagher
  • Patent number: 9585524
    Abstract: A wall-entry bathtub includes a basin, a shell defining an entryway to allow access into the basin, and an entry wall movable between a lowered position and a raised position, wherein the entry wall is substantially clear of the entryway in the lowered position and at least partially blocks the entryway in the raised position. The bathtub also includes first and second entry wall position sensors configured to sense the position of the entry wall and a controller in electronic communication with the first and second entry wall position sensors, wherein the controller is configured to control components of the bathtub based at least in part on the position of the entry wall.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: March 7, 2017
    Assignee: KOHLER CO.
    Inventors: Scott R. Knapp, Santosh R. Narasimhan, Jeffrey F. Tempas, Kenneth A. Lefeber, David P. Ourada, Fred Ogreenc
  • Patent number: 9560479
    Abstract: Embodiments of a location sharing network manager process are described. The process is executed on a server computer coupled to a plurality of mobile communication devices over a wireless network. Each mobile device is a location-aware mobile communication device. The process determines the geographic location of a mobile communication device operated by a user within an area, displays a map representation of the area around the mobile communication device on a graphical user interface of the mobile communication device, and superimposes on the map the respective locations of one or more other trusted users of mobile communication devices coupled to the mobile communication device over the network. A security component allows users to establish trusted relationships by requiring mutual consent and disclosure of identifier and phone number information for each trusted user. Location information can be blocked among trusted users or obfuscated on the display of the mobile devices of the other users.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: January 31, 2017
    Assignee: GREEN DOT CORPORATION
    Inventors: Samuel H. Altman, Nicholas T. Sivo, Mark Jacobstein, Brian R. Knapp, James F. Potter, Thomas B. Pernikoff
  • Publication number: 20160377562
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 29, 2016
    Applicants: CALIPER LIFE SCIENCES, INC., CANON U.S. LIFE SCIENCES, INC.
    Inventors: Steven A. Sundberg, Michael R. Knapp, Ivor T. Knight, Deborah J. Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edwawrd Donlon, Robert Moti, Michael Slater
  • Patent number: D911796
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: March 2, 2021
    Assignee: Milwaukee Electric Tool Corporation
    Inventors: Alexander A. Chollet, Geoffrey R. Piller, Austin J. Kazda, Rudolph S. Fortuna, Walter R. Knapp