Patents by Inventor Radhika Suresh

Radhika Suresh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200116640
    Abstract: A cyanide-functionalized gold nanoparticle. A method of making cyanide-functionalized gold nanoparticles includes forming an aqueous reaction mixture comprising a gold precursor and glycine, keeping the reaction mixture at about 18° C. to about 50° C. for at least 6 days to provide formation of the cyanide-functionalized gold nanoparticles, and isolating the cyanide-functionalized gold nanoparticles from the reaction mixture. A method of analyzing a sample, comprising contacting cyanide-functionalized gold nanoparticles with the sample and performing an analytical method on the sample. A sensor comprises cyanide-functionalized gold nanoparticles.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Radhika Suresh, Sankaran Murugesan, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10570035
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 25, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Publication number: 20200058841
    Abstract: A thermoelectric material includes a polymer matrix and a plurality of partially coated particles dispersed within the polymer matrix. Each particle of the plurality has a discontinuous coating of metal on a carbon-based material. A method includes dispersing functionalized particles comprising a carbon-based material in a solvent; providing a metal salt in the solvent; and forming a plurality of distinct metal volumes on a surface of the functionalized particles to form partially coated particles. The distinct metal volumes are thermally insulated from other volumes of the plurality. A composition of matter includes a discontinuous coating of metal on a surface of a carbon-based material. The carbon-based material is selected from the group consisting of graphene oxide and functionalized carbon nanotubes.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 20, 2020
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 10513451
    Abstract: A process for drying mature fine tailings is provided. A low molecular weight anionic organic polymer is contacted with a tailings stream to flocculate mature fine tailings and enhance dewatering. The tailings stream can contain, for example, water, sand, silt and fines clays produced from a bitumen extraction process for oil sands ore. The process can also involve rigidification of the suspension.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: December 24, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Christabel T. Tomla, Oleksandr V. Kuznetsov, Radhika Suresh
  • Patent number: 10480313
    Abstract: A method of determining a property within a subterranean formation comprises introducing silica nanoparticles into a well; obtaining a sample of a fluid produced from the well; and analyzing the sample for presence of the silica nanoparticles, wherein the silica nanoparticles comprise a core, a donor chromophore, an acceptor chromophore, and an outer silica shell; the donor chromophore and the acceptor chromophore being selected such that an emission spectrum of the donor chromophore overlaps with an absorption spectrum of the acceptor chromophore.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: November 19, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Oleksandr Kuznetsov, Valery Khabashesku, Qusai Darugar
  • Patent number: 10468574
    Abstract: A thermoelectric material includes a polymer matrix and a plurality of partially coated particles dispersed within the polymer matrix. Each particle of the plurality has a discontinuous coating of metal on a carbon-based material. A method includes dispersing functionalized particles comprising a carbon-based material in a solvent; providing a metal salt in the solvent; and forming a plurality of distinct metal volumes on a surface of the functionalized particles to form partially coated particles. The distinct metal volumes are thermally insulated from other volumes of the plurality. A composition of matter includes a discontinuous coating of metal on a surface of a carbon-based material. The carbon-based material is selected from the group consisting of graphene oxide and functionalized carbon nanotubes.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: November 5, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 10450208
    Abstract: Various illustrative embodiments of a process for enhanced flocculation and clarification of produced water from oil and gas wells using nanoparticles are provided herein. Certain nanoparticles can increase the settling rate of solids in produced water when used alone or combined with certain conventional flocculents.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: October 22, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Oleksandr Kuznetsov, Radhika Suresh, Valery Khabashesku
  • Publication number: 20190299184
    Abstract: A composition of matter includes a liquid and nanoparticles suspended in the liquid. The nanoparticles each include silica, alumina, and an organosilicon functional group having a molecular weight of at least 200. A method includes functionalizing a surface of nanoparticles with an organosilicon functional group and dispersing the nanoparticles in a liquid to form a suspension. The functional group has a molecular weight of at least 200. The nanoparticles each include silica and alumina at a surface thereof.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventors: Radhika Suresh, Devesh K. Agrawal, Oleksandr V. Kuznetsov, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10280737
    Abstract: Carbon quantum dots are used as tracers during the production of hydrocarbons. The tracer may be used to identify fluids produced from the reservoir. When used in the fracturing of multiple zones of the reservoir, qualitatively distinguishable carbon quantum dots may be used to identify the zone within the reservoir from which recovered fluid was produced. The carbon quantum dots may also be used in water flooding to determine water breakthrough in the production well. Upon water breakthrough in a production well, they may also be used to identify those injection wells from which breakthrough water originates.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: May 7, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: D. V. Satyanarayana Gupta, Sankaran Murugesan, Oleksandr Kuznetsov, Radhika Suresh, Valery N. Khabasheku
  • Patent number: 10247675
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: April 2, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Patent number: 10209193
    Abstract: A method and apparatus for estimating a concentration of chemicals in a fluid flowing in a fluid passage is disclosed. A sample of the fluid is placed on a substrate comprising a first layer of carbon nanotubes and a second layer of metal nanowires. An energy source radiates the fluid sample with electromagnetic radiation at a selected energy level, and a detector measures an energy level of radiation emitted from the fluid sample in response to the electromagnetic radiation. A processor determines a Raman spectrum of the fluid sample from the energy level of the emitted radiation and estimates the concentration of a selected chemical in the fluid sample based on the Raman spectrum.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: February 19, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Darryl N. Ventura, Sankaran Murugesan, Valery N. Khabashesku, Radhika Suresh
  • Publication number: 20190010382
    Abstract: A method of recovering hydrocarbons comprises introducing a suspension comprising nanoparticles to a material and contacting surfaces of the material with the suspension. After introducing the suspension comprising the nanoparticles to the material, the method further includes introducing at least one charged surfactant to the material and removing hydrocarbons from the material. Accordingly, in some embodiments, the nanoparticles may be introduced to the material prior to introduction of the surfactant to the material. Related methods of recovering hydrocarbons from a material are also disclosed.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 10, 2019
    Inventors: Oleksandr V. Kuznetsov, Devesh K. Agrawal, Radhika Suresh, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10167392
    Abstract: In a composition including a plurality of coated diamond nanoparticles, each diamond nanoparticle may have at least one silane functional group covalently bonded to a surface thereof. A method of forming coated diamond nanoparticles may include functionalizing surfaces of diamond nanoparticles with at least one of a fluorine-containing compound and an oxidant; dispersing the functionalized diamond nanoparticles in a solvent comprising a silane functional group; and forming covalent bonds between the silane functional group and the diamond nanoparticles. A method of forming a diamond coating may include depositing the diamond nanoparticles over a substrate.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: January 1, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Radhika Suresh, Joshua C. Falkner, Valery N. Khabashesku, Othon R. Monteiro, Devesh K. Agrawal
  • Publication number: 20180363452
    Abstract: A method of determining a property within a subterranean formation comprises introducing silica nanoparticles into a well; obtaining a sample of a fluid produced from the well; and analyzing the sample for presence of the silica nanoparticles, wherein the silica nanoparticles comprise a core, a donor chromophore, an acceptor chromophore, and an outer silica shell; the donor chromophore and the acceptor chromophore being selected such that an emission spectrum of the donor chromophore overlaps with an absorption spectrum of the acceptor chromophore.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 20, 2018
    Applicant: Baker Hughes Incorporated
    Inventors: Sankaran Murugesan, Radhika Suresh, Oleksandr Kuznetsov, Valery Khabashesku, Qusai Darugar
  • Publication number: 20180342660
    Abstract: A thermoelectric material includes a polymer matrix and a plurality of partially coated particles dispersed within the polymer matrix. Each particle of the plurality has a discontinuous coating of metal on a carbon-based material. A method includes dispersing functionalized particles comprising a carbon-based material in a solvent; providing a metal salt in the solvent; and forming a plurality of distinct metal volumes on a surface of the functionalized particles to form partially coated particles. The distinct metal volumes are thermally insulated from other volumes of the plurality. A composition of matter includes a discontinuous coating of metal on a surface of a carbon-based material. The carbon-based material is selected from the group consisting of graphene oxide and functionalized carbon nanotubes.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 29, 2018
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Publication number: 20180327652
    Abstract: A method of recovering hydrocarbons from a subterranean formation comprises introducing a suspension comprising at least one of silica nanoparticles or aluminum silicate nanoparticles into a subterranean formation and contacting surfaces of the subterranean formation with the suspension to form a layer of the at least one of silica nanoparticles or aluminum silicate nanoparticles on at least some surfaces of the subterranean formation. After introducing the suspension comprising the at least one of silica nanoparticles or aluminum silicate nanoparticles into the subterranean formation, the method further includes introducing a solution comprising at least one anionic surfactant into the subterranean formation and extracting hydrocarbons from the subterranean formation. Accordingly, in some embodiments, the nanoparticles may be introduced into the subterranean formation prior to introduction of the surfactant into the subterranean formation.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 15, 2018
    Inventors: Oleksandr V. Kuznetsov, Devesh K. Agrawal, Radhika Suresh, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Publication number: 20180273405
    Abstract: A process for drying mature fine tailings is provided. A low molecular weight anionic organic polymer is contacted with a tailings stream to flocculate mature fine tailings and enhance dewatering. The tailings stream can contain, for example, water, sand, silt and fines clays produced from a bitumen extraction process for oil sands ore. The process can also involve rigidification of the suspension.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 27, 2018
    Applicant: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: CHRISTABEL T. Tomla, OLEKSANDR V. KUZNETSOV, RADHIKA SURESH
  • Publication number: 20180246039
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Patent number: 10025000
    Abstract: A method of detecting at least one of an analyte or a condition of a fluid within a subterranean formation includes operably coupling a radiation source to at least one optical fiber coupled to a sensor having optically sensitive materials including at least one of chromophores, fluorophores, metal nanoparticles, or metal oxide nanoparticles dispersed within an optically transparent permeable matrix material. The sensor is contacted within a wellbore with a fluid and the fluid is passed through at least a portion of the sensor. Electromagnetic radiation is transmitted from the radiation source through at least one optical fiber to the sensor and at least one of an absorbance spectrum, an emission spectrum, a maximum absorption intensity, or a maximum emission intensity of electromagnetic radiation passing through the sensor after contacting at least some of the optically sensitive materials with the fluid is measured.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: July 17, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Othon R. Monteiro, Radhika Suresh
  • Publication number: 20180194620
    Abstract: A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 12, 2018
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar