Patents by Inventor Radhika Suresh

Radhika Suresh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180179437
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Publication number: 20180118587
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 9958394
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: May 1, 2018
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Publication number: 20180067054
    Abstract: A method of analyzing a selected refinery chemical at a low concentration comprises contacting a sample with functionalized metallic nanoparticles that contain metallic nanoparticles functionalized with a functional group comprising a cyano group, a thiol group, a carboxyl group, an amino group, a boronic acid group, an aza group, an ether group, a hydroxyl group, or a combination comprising at least one of the foregoing; radiating the sample contacted with the functionalized metallic nanoparticles with electromagnetic radiation at a selected energy level; measuring a Raman spectrum emitted from the sample; and determining the presence or a concentration of a selected refinery chemical in the sample from the Raman spectrum.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Radhika Suresh, Sankaran Murugesan, Valery N. Khabashesku, Darryl Ventura
  • Patent number: 9902896
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: February 27, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Publication number: 20180024066
    Abstract: A system and method for estimating a concentration of monoethanolamine (MEA) in a fluid. A substrate for supporting a sample of the fluid during testing includes a carbon nanotube mat layer, a silver nanowire layer disposed on the carbon nanotube mat layer, and a chemical enhancer layer disposed on the silver nanowire layer. A sample of the fluid is placed on the substrate, and the fluid sample is radiated with electromagnetic radiation at a selected energy level. A detector measures a Raman spectrum emitted from the sample in response to the electromagnetic radiation. A processor estimates the concentration of MEA in the sample from the Raman spectrum and adds a corrosion inhibitor to the fluid in an amount based on the estimated concentration of MEA to reduce the concentration of MEA in the fluid.
    Type: Application
    Filed: August 15, 2017
    Publication date: January 25, 2018
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Darryl N. Ventura, Bradley G. Harrell, Valery N. Khabashesku, Qusai A. Darugar
  • Patent number: 9856158
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: January 2, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Publication number: 20170349461
    Abstract: Various illustrative embodiments of a process for enhanced flocculation and clarification of produced water from oil and gas wells using nanoparticles are provided herein. Certain nanoparticles can increase the settling rate of solids in produced water when used alone or combined with certain conventional flocculents.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 7, 2017
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: OLEKSANDR KUZNETSOV, RADHIKA SURESH, VALERY KHABASHESKU
  • Publication number: 20170315061
    Abstract: A method and apparatus for estimating a concentration of chemicals in a fluid flowing in a fluid passage is disclosed. A sample of the fluid is placed on a substrate comprising a first layer of carbon nanotubes and a second layer of metal nanowires. An energy source radiates the fluid sample with electromagnetic radiation at a selected energy level, and a detector measures an energy level of radiation emitted from the fluid sample in response to the electromagnetic radiation. A processor determines a Raman spectrum of the fluid sample from the energy level of the emitted radiation and estimates the concentration of a selected chemical in the fluid sample based on the Raman spectrum.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 2, 2017
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Darryl N. Ventura, Sankaran Murugesan, Valery N. Khabashesku, Radhika Suresh
  • Publication number: 20170212272
    Abstract: A method of detecting at least one of an analyte or a condition of a fluid within a subterranean formation comprises operably coupling a radiation source to at least one optical fiber coupled to a sensor comprising optically sensitive materials including at least one of chromophores, fluorophores, metal nanoparticles, or metal oxide nanoparticles dispersed within an optically transparent permeable matrix material. The sensor is contacted within a wellbore with a fluid and the fluid is passed through at least a portion of the sensor. Electromagnetic radiation is transmitted from the radiation source through at least one optical fiber to the sensor and at least one of an absorbance spectrum, an emission spectrum, a maximum absorption intensity, or a maximum emission intensity of electromagnetic radiation passing through the sensor after contacting at least some of the optically sensitive materials with the fluid is measured.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 27, 2017
    Inventors: Othon R. Monteiro, Radhika Suresh
  • Publication number: 20170210973
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation are also described.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 27, 2017
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Publication number: 20170204334
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 20, 2017
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 9708896
    Abstract: Suspensions comprising amphiphilic nanoparticles and at least one carrier fluid. The amphiphilic nanoparticles may be formed from a carbon-containing material and include at least a hydrophilic portion and a hydrophobic portion. The hydrophilic portion comprises at least one hydrophilic functional group and the hydrophobic portion includes at least one hydrophobic functional group. Methods of forming the flooding suspension and methods of removing a hydrocarbon material using the flooding suspensions are disclosed.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: July 18, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Soma Chakraborty
  • Patent number: 9708525
    Abstract: Suspensions comprising amphiphilic nanoparticles and at least one carrier fluid. The amphiphilic nanoparticles include at least a hydrophilic portion and a hydrophobic portion. The hydrophilic portion comprises at least one hydrophilic functional group and the hydrophobic portion includes at least one hydrophobic functional group. Methods of forming the flooding suspension and methods of removing a hydrocarbon material using the flooding suspensions.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: July 18, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 9611422
    Abstract: Suspensions comprising an organic base and at least one carrier fluid. The organic base comprises an amine group and at least one hydrophobic group attached to the amine group. The at least one hydrophobic group may be functionalized with one or more functional groups. Methods of extracting and obtaining a hydrocarbon material from a subterranean formation or bitumen using the suspension are disclosed.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: April 4, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: Radhika Suresh, Valery N. Khabashesku, Oleksandr V. Kuznetsov
  • Publication number: 20170088696
    Abstract: A downhole article comprises: an elastomer comprising one or more of the following: an ethylene-propylene-diene monomer rubber; a butadiene rubber; a styrene-butadiene rubber; a natural rubber; an acrylonitrile butadiene rubber; a styrene-butadiene-acrylonitrile resin; a butadiene-nitrile rubber; a polyisoprene rubber; an acrylate-butadiene rubber; a polychloroprene rubber; an acrylate-isoprene rubber; an ethylene-vinyl acetate rubber; a polypropylene oxide rubber; a polypropylene sulfide rubber; a fluoroelastomer; a perfluoroelastomer; or a thermoplastic polyurethane rubber; and a filler dispersed in a functionalized silsesquioxane having a viscosity of about 1 poise to about 40 poise at 25° C.
    Type: Application
    Filed: September 15, 2016
    Publication date: March 30, 2017
    Applicant: Baker Hughes Incorporated
    Inventors: Rostyslav Dolog, Radhika Suresh, Valery N. Khabashesku
  • Publication number: 20170022804
    Abstract: Carbon quantum dots are used as tracers during the production of hydrocarbons. The tracer may be used to identify fluids produced from the reservoir. When used in the fracturing of multiple zones of the reservoir, qualitatively distinguishable carbon quantum dots may be used to identify the zone within the reservoir from which recovered fluid was produced. The carbon quantum dots may also be used in water flooding to determine water breakthrough in the production well. Upon water breakthrough in a production well, they may also be used to identify those injection wells from which breakthrough water originates.
    Type: Application
    Filed: June 3, 2016
    Publication date: January 26, 2017
    Inventors: D. V. Satyanarayana Gupta, Sankaran Murugesan, Oleksandr Kuznetsov, Radhika Suresh, Valery N. Khabasheku
  • Publication number: 20160122551
    Abstract: In a composition including a plurality of coated diamond nanoparticles, each diamond nanoparticle may have at least one silane functional group covalently bonded to a surface thereof. A method of forming coated diamond nanoparticles may include functionalizing surfaces of diamond nanoparticles with at least one of a fluorine-containing compound and an oxidant; dispersing the functionalized diamond nanoparticles in a solvent comprising a silane functional group; and forming covalent bonds between the silane functional group and the diamond nanoparticles. A method of forming a diamond coating may include depositing the diamond nanoparticles over a substrate.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 5, 2016
    Inventors: Radhika Suresh, Joshua C. Falkner, Valery N. Khabashesku, Othon R. Monteiro, Devesh Kumar Agrawal
  • Publication number: 20150344769
    Abstract: Suspensions comprising an organic base and at least one carrier fluid. The organic base comprises an amine group and at least one hydrophobic group attached to the amine group. The at least one hydrophobic group may be functionalized with one or more functional groups. Methods of extracting and obtaining a hydrocarbon material from a subterranean formation or bitumen using the suspension are disclosed.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: Radhika Suresh, Valery N. Khabashesku, Oleksandr V. Kuznetsov
  • Publication number: 20150218435
    Abstract: Suspensions comprising amphiphilic nanoparticles and at least one carrier fluid. The amphiphilic nanoparticles include at least a hydrophilic portion and a hydrophobic portion. The hydrophilic portion comprises at least one hydrophilic functional group and the hydrophobic portion includes at least one hydrophobic functional group. Methods of forming the flooding suspension and methods of removing a hydrocarbon material using the flooding suspensions are disclosed.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 6, 2015
    Applicant: Baker Hughes Incorporated
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku