Patents by Inventor Rahmi Hezar

Rahmi Hezar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200209984
    Abstract: An optical position sensing system is disclosed. The system includes a substrate having a surface. A plurality of photodetectors are at multiple locations across the surface, each of the plurality of photodetectors providing detector pulse signals in response to receiving the light. The system further includes a processor that determines a phase shift between the transmitted light pulse signals and the respective detector pulse signals and applies a multi-path resolution operation to distinguish between the detector pulse signals representing the transmitted light pulse signals and those representing reflected light pulse signals. The processor also calculates a distance of a transmitting device from each of the photodetectors based on the determined phase shift and the multi-path resolution operation and calculates a multi-dimensional position of the transmitting device relative to the substrate based on the calculated distances.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: TING LI, RAHMI HEZAR, SRINATH MATHUR RAMASWAMY, ANAND DABAK, BAHER HAROUN
  • Patent number: 10694289
    Abstract: One example includes a system that is comprised of a speaker, an amplifier, a current sensor, and a compensator circuit. The speaker produces audio in response to an amplified analog input signal received at a speaker input. The amplifier receives an analog audio input signal and provides the amplified analog audio input signal to the speaker input. The current sensor senses current passing through the speaker and provides a current sensor signal indicative thereof. The compensator circuit applies a transfer function to the current sensor signal to provide a compensation signal as feedback into the analog audio input signal, the transfer function matching at least one of resistance and inductance of the speaker.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: June 23, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahmi Hezar, Rajan Narasimha, Srinath Ramaswamy
  • Patent number: 10666204
    Abstract: A circuit includes an amplifier to amplify an input signal and generate an output signal. The circuit also includes a tuning network to tune frequency response of the amplifier. The tuning network includes at least one tunable capacitor, which includes at least one micro-electro mechanical system (MEMS) capacitor. The amplifier could include a first die, the at least one MEMS capacitor could include a second die, and the first die and the second die could be integrated in a single package. The at least one MEMS capacitor could include a MEMS superstructure over a control structure, which is to control the MEMS superstructure and tune the capacitance of the at least one MEMS capacitor.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 26, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aritra Banerjee, Nathan R. Schemm, Rahmi Hezar, Lei Ding, Baher Haroun
  • Publication number: 20190173438
    Abstract: A first branch group circuit includes a first branch circuit receiving a first RF input signal and first control information; and a second branch circuit receiving the first input signal and second control information. Each of the first and second branch circuits includes a power amplifier. The second control information enables the second branch circuit to be switched on or off while the first branch circuit remains on. A second branch group circuit includes: a third branch circuit receiving a second RF input signal and third control information; and a fourth branch circuit receiving the second input signal and fourth control information. Each of the third and fourth branch circuits includes a power amplifier. The fourth control information enables the fourth branch circuit to be switched on or off while the third branch circuit remains on. A combiner combines output signals of the power amplifiers to produce an output signal.
    Type: Application
    Filed: January 28, 2019
    Publication date: June 6, 2019
    Inventors: Aritra Banerjee, Rahmi Hezar, Lei Ding, Nathan Richard Schemm
  • Patent number: 10250192
    Abstract: An outphasing amplifier includes a first class-E power amplifier having an output coupled to a first conductor and an input receiving a first RF drive signal. A first reactive element is coupled between the first conductor and a second conductor. A second reactive element is coupled between the second conductor and a third conductor. A second class-E power amplifier includes an output coupled to a fourth conductor and an input coupled to a second RF drive signal, a third reactive element coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load. An efficiency enhancement circuit is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits are coupled to the first and fourth conductors, respectively.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: April 2, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aritra Banerjee, Joonhoi Hur, Baher Haroun, Nathan Richard Schemm, Rahmi Hezar, Lei Ding
  • Patent number: 10224811
    Abstract: Methods and apparatus for reducing electromagnetic interference in a power converter using phase hopping in conjunction with pulse width modulation are disclosed. An example power converter includes an input voltage to, when a control switching device receives a first voltage, increase an output voltage; and when the control switching device receives a second voltage, decrease the output voltage. The example power converter further includes a phase hopping generator to generate a phase varying signal corresponding to two or more phases, the phase varying signal corresponding to a reference voltage; and output the phase varying signal to control the control switching device.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: March 5, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahmi Hezar, Nikolaus Klemmer
  • Publication number: 20190068135
    Abstract: A circuit includes an amplifier to amplify an input signal and generate an output signal. The circuit also includes a tuning network to tune frequency response of the amplifier. The tuning network includes at least one tunable capacitor, which includes at least one micro-electro mechanical system (MEMS) capacitor. The amplifier could include a first die, the at least one MEMS capacitor could include a second die, and the first die and the second die could be integrated in a single package. The at least one MEMS capacitor could include a MEMS superstructure over a control structure, which is to control the MEMS superstructure and tune the capacitance of the at least one MEMS capacitor.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Inventors: Aritra Banerjee, Nathan R. Schemm, Rahmi Hezar, Lei Ding, Baher Haroun
  • Patent number: 10205617
    Abstract: For crest factor reduction in a first signal having first and second components, the first component is delayed. A second signal is generated in response to detecting that a peak in the first component exceeds a predetermined threshold. Amplitude of the peak in the first component is reduced in response to detecting that the peak in the first component exceeds the predetermined threshold. Reducing amplitude of the peak in the first component includes adding the second signal to the delayed first component.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 12, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Lei Ding, Rahmi Hezar, Zigang Yang
  • Patent number: 10193508
    Abstract: A multi-level, multi-branch outphasing amplifier (20-1) includes a first branch group circuit (22-1) including a first branch circuit (11) receiving a first RF input signal (S1(t)) and first control information (S11_Ctrl=VDD) and a second branch circuit (12) receiving the first input signal and second control information (S12_Ctrl). Each of the first (11) and second (12) branch circuits includes a power amplifier. The second control information enables the second branch circuit to be switched on or off while the first branch circuit (12) remains on. A second branch group circuit (22-2) includes a third branch circuit (21) receiving a second RF input signal (S2(t)) and third control information (S21_Ctrl=VDD) and a fourth branch circuit (22) receiving the second input signal (S2(t)) and fourth control information (S22_Ctrl). Each of the third and fourth branch circuits includes a power amplifier.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: January 29, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aritra Banerjee, Rahmi Hezar, Lei Ding, Nathan Richard Schemm
  • Publication number: 20180324524
    Abstract: One example includes a system that is comprised of a speaker, an amplifier, a current sensor, and a compensator circuit. The speaker produces audio in response to an amplified analog input signal received at a speaker input. The amplifier receives an analog audio input signal and provides the amplified analog audio input signal to the speaker input. The current sensor senses current passing through the speaker and provides a current sensor signal indicative thereof. The compensator circuit applies a transfer function to the current sensor signal to provide a compensation signal as feedback into the analog audio input signal, the transfer function matching at least one of resistance and inductance of the speaker.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 8, 2018
    Inventors: RAHMI HEZAR, RAJAN NARASIMHA, SRINATH RAMASWAMY
  • Patent number: 10116270
    Abstract: A circuit includes an amplifier configured to amplify an input signal and generate an output signal. The circuit also includes a tuning network configured to tune frequency response of the amplifier. The tuning network includes at least one tunable capacitor, where the at least one tunable capacitor includes at least one micro-electro mechanical system (MEMS) capacitor. The amplifier could include a first die, the at least one MEMS capacitor could include a second die, and the first die and the second die could be integrated in a single package. The at least one MEMS capacitor could include a MEMS superstructure disposed over a control structure, where the control structure is configured to control the MEMS superstructure and tune the capacitance of the at least one MEMS capacitor.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: October 30, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aritra Banerjee, Nathan R. Schemm, Rahmi Hezar, Lei Ding, Baher Haroun
  • Publication number: 20180226880
    Abstract: Methods and apparatus for providing adaptive electromagnetic interference control in a power converter are disclosed. An example apparatus includes a current interface to measure an internal current of the power converter. The example apparatus further includes a performance determiner to determine a spur power of an output voltage of the power converter based on the measured internal current. The example apparatus further includes a ramp generator to adjust a hopping configuration of a ramp voltage based on the spur power.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 9, 2018
    Inventors: Rahmi Hezar, Jeffrey Morroni
  • Patent number: 10044257
    Abstract: Methods and apparatus for providing adaptive electromagnetic interference control in a power converter are disclosed. An example apparatus includes a current interface to measure an internal current of the power converter. The example apparatus further includes a performance determiner to determine a spur power of an output voltage of the power converter based on the measured internal current. The example apparatus further includes a ramp generator to adjust a hopping configuration of a ramp voltage based on the spur power.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: August 7, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahmi Hezar, Jeffrey Morroni
  • Publication number: 20180219480
    Abstract: Methods and apparatus for reducing electromagnetic interference in a power converter using phase hopping in conjunction with pulse width modulation are disclosed. An example power converter includes an input voltage to, when a control switching device receives a first voltage, increase an output voltage; and when the control switching device receives a second voltage, decrease the output voltage. The example power converter further includes a phase hopping generator to generate a phase varying signal corresponding to two or more phases, the phase varying signal corresponding to a reference voltage; and output the phase varying signal to control the control switching device.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 2, 2018
    Inventors: Rahmi Hezar, Nikolaus Klemmer
  • Publication number: 20180006609
    Abstract: An outphasing amplifier includes a first class-E power amplifier having an output coupled to a first conductor and an input receiving a first RF drive signal. A first reactive element is coupled between the first conductor and a second conductor. A second reactive element is coupled between the second conductor and a third conductor. A second class-E power amplifier includes an output coupled to a fourth conductor and an input coupled to a second RF drive signal, a third reactive element coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load. An efficiency enhancement circuit is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits are coupled to the first and fourth conductors, respectively.
    Type: Application
    Filed: September 19, 2017
    Publication date: January 4, 2018
    Inventors: Aritra Banerjee, Joonhoi Hur, Baher Haroun, Nathan Richard Schemm, Rahmi Hezar, Lei Ding
  • Patent number: 9806673
    Abstract: An outphasing amplifier includes a first class-E power amplifier (16-1) having an output coupled to a first conductor (31-1) and an input receiving a first RF drive signal (S1(t)). A first reactive element (CA-1) is coupled between the first conductor and a second conductor (30-1). A second reactive element (LA-1) is coupled between the second conductor and a third conductor (32-1). A second class-E power amplifier (17-1) includes an output coupled to a fourth conductor (31-2) and an input coupled to a second RF drive signal (S2(t)), a third reactive element (CA-3) coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load (R). An efficiency enhancement circuit (LEEC-1) is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits (20-1,2) are coupled to the first and fourth conductors, respectively.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: October 31, 2017
    Assignee: TEXAS INSTRUMENT INCORPORATED
    Inventors: Aritra Banerjee, Joonhoi Hur, Baher Haroun, Nathan Richard Schemm, Rahmi Hezar, Lei Ding
  • Patent number: 9806610
    Abstract: Noise-shaped frequency hopping power converters are disclosed. An example noise-shaped frequency hopping power converter comprises a shaped number generator having a first output to output a noise-shaped selection signal and a power converter having a first input to receive an input voltage signal, a second input to receive a switching signal that is based on the noise-shaped selection signal, and a second output to output an output voltage signal based on the switching signal.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 31, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahmi Hezar, Nikolaus Klemmer
  • Patent number: 9800272
    Abstract: For generating quantized signals, a quantized phase domain related to quantized phases of an input signal is generated. Vectors that the input signal may occupy are calculated based on the quantized phase domain. A first quantized phase of a first component of the input signal is generated per the quantized phase domain, and a second quantized phase of a second component of the input signal is generated per the quantized phase domain.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 24, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahmi Hezar, Lei Ding, Joonhoi Hur
  • Publication number: 20170093279
    Abstract: Noise-shaped frequency hopping power converters are disclosed. An example noise-shaped frequency hopping power converter comprises a shaped number generator having a first output to output a noise-shaped selection signal and a power converter having a first input to receive an input voltage signal, a second input to receive a switching signal that is based on the noise-shaped selection signal, and a second output to output an output voltage signal based on the switching signal.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Rahmi Hezar, Nikolaus Klemmer
  • Patent number: 9602325
    Abstract: At least one tone is generated. An output signal is generated in response to an input signal and the at least one tone. The output signal is modulated. The input signal and the at least one tone are represented in the modulated output signal. The at least one tone is outside a bandwidth of the input signal as represented in the modulated output signal. The modulated output signal is amplified. The at least one tone in the amplified signal is attenuated after the amplifying.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: March 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahmi Hezar, Lei Ding, Baher Haroun