Patents by Inventor Rahul Gulati

Rahul Gulati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190196926
    Abstract: A graphics processing unit (GPU) of a GPU subsystem of a computing device operates in a first rendering mode to process graphics data to produce a first image. The GPU operates in a second rendering mode to process the graphics data to produce a second image. The computing device detects whether a fault has occurred in the GPU subsystem based at least in part on comparing the first image with the second image.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 27, 2019
    Inventors: Alex Kwang Ho Jong, Jay Chunsup Yun, Donghyun Kim, Rahul Gulati, Brendon Lewis Johnson, Andrew Evan Gruber
  • Patent number: 10331532
    Abstract: Aspects disclosed herein relate to periodic non-intrusive diagnosis of lockstep systems. An exemplary method includes comparing execution of a program on a first processing system of the plurality of processing systems and execution of the program on a second processing system of the plurality of processing systems using a first comparator circuit, comparing the execution of the program on the first processing system and the execution of the program on the second processing system using a second comparator circuit, and running a diagnosis program on the second comparator circuit while the comparing using the first comparator circuit is ongoing.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: June 25, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Kapil Bansal, Kailash Digari, Rahul Gulati
  • Publication number: 20190181982
    Abstract: Systems and method for error detection in automobile tell-tales are provided. An initial cyclic redundancy check (CRC) for a tell-tale to be calculated and stored at a primary control system within the vehicle. When a fault or condition is detected which generates the tell-tale, the primary control system passes video information to a display embedded control unit (ECU) along with the initial CRC. A circuit in the display ECU performs its own CRC calculation and compares the initial CRC to the calculated CRC. If there is not a match, then a fault indication may be provided to the primary control system for action by the primary control system. Still further, back up or fail-operational options may be invoked so that the tell-tale is provided to the operator.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 13, 2019
    Inventors: Robert Hardacker, Rahul Gulati, Alex Jong
  • Publication number: 20190179588
    Abstract: Alternative display options for vehicle telltales are disclosed. In one aspect, a fault condition in a telltale is detected, and the telltale is presented through a secondary display system in the vehicle, potentially bypassing any local control unit for the secondary display system. For example, a video telltale may be presented on an infotainment display after detection of a fault in the original telltale. By presenting the telltale in an alternate display, the operator remains informed of sensor conditions in the automobile and may take remedial action to fix the fault as well as any conditions which trigger a telltale.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventors: Jeffrey Hao Chu, Rahul Gulati, Behnam Katibian, Alex Jong, Robert Hardacker, Reza Kakoee
  • Publication number: 20190176838
    Abstract: A system and a method for error-correction code (“ECC”) error handling is described herein. In one aspect, the system and method may operate an ECC function on raw data. The ECC function may include generating ECC syndrome data by an ECC syndrome data generating module. The ECC syndrome data may be derived from the raw data. The system and a method may further inject a fault based on the ECC syndrome data or the raw data. The system and a method may further determine whether the ECC error detected by the ECC checker corresponds to a malfunction of the ECC function or the fault injected based on the ECC syndrome data or the raw data.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mohammad Reza KAKOEE, Rahul Gulati, Eric Mahurin, Suresh Kumar Venkumahanti, Dexter Chun
  • Publication number: 20190171538
    Abstract: The disclosure describes techniques for a self-test of a graphics processing unit (GPU) independent of instructions from another processing device. The GPU may perform the self-test in response to a determination that the GPU enters an idle mode. The self-test may be based on information indicating a safety level, where the safety level indicates how many faults in circuits or memory blocks of the GPU need to be detected.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Rahul Gulati, Andrew Evan Gruber, Brendon Lewis Johnson, Jay Chunsup Yun, Donghyun Kim, Alex Kwang Ho Jong, Anshuman Saxena
  • Publication number: 20190139263
    Abstract: Techniques of this disclosure may include processing data using one or more processors to produce a first image, including storing intermediate first results of processing the data in at least one internal memory of the one or more processors according to a first memory access pattern, processing the data using the one or more processors to produce a second image, including storing intermediate second results of processing the data in the at least one internal memory of the one or more processors according to a second memory access pattern, wherein the second memory access pattern is different than the first memory access pattern, comparing the first image to the second image, and generating an interrupt if the comparison indicates that the first image is different than the second image.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 9, 2019
    Inventors: Andrew Evan Gruber, Rahul Gulati, Brendon Lewis Johnson, Jay Chunsup Yun, Alex Kwang Ho Jong, Donghyun Kim
  • Publication number: 20190132555
    Abstract: Methods and systems to broadcast sensor outputs in an automotive environment allow sensors such as cameras to output relatively unprocessed (raw) data to two or more different processing circuits where the processing circuits are located in separate and distinct embedded control units (ECUs). A first one of the two or more different processing circuits processes the raw data for human consumption. A second one of the two or more different processing circuits processes the raw data for machine utilization such as for autonomous driving functions. Such an arrangement allows for greater flexibility in utilization of the data from the sensors without imposing undue latency in the processing stream and without compromising key performance indices for human use and machine use.
    Type: Application
    Filed: September 7, 2018
    Publication date: May 2, 2019
    Inventors: Jeffrey Hao Chu, Rahul Gulati, Robert Hardacker, Alex Jong, Mohammad Reza Kakoee, Behnam Katibian, Anshuman Saxena, Sanjay Vishin, Sanat Kapoor
  • Publication number: 20190114132
    Abstract: Alternative display options for vehicle telltales are disclosed. In one aspect, a fault condition in a telltale is detected, and the telltale is presented through a secondary display system in the vehicle, potentially bypassing any local control unit for the secondary display system. For example, a video telltale may be presented on an infotainment display after detection of a fault in the original telltale. By presenting the telltale in an alternate display, the operator remains informed of sensor conditions in the automobile and may take remedial action to fix the fault as well as any conditions which trigger a telltale.
    Type: Application
    Filed: September 11, 2018
    Publication date: April 18, 2019
    Inventors: Jeffrey Hao Chu, Rahul Gulati, Robert Hardacker, Alex Jong, Reza Kakoee, Behnam Katibian
  • Publication number: 20190065785
    Abstract: A computing device includes a hardware resource, a component to send a transaction signal including a target address of the hardware resource, a security data associated with an initiator of the transaction signal, and a safety data associated with the initiator, and an access control unit coupled to the component and the hardware resource, the access control unit to receive the transaction signal, determine whether security access is granted based on the transaction signal, determine whether safety access is granted based on the transaction signal, and allow access to the hardware resource based on both the security access and the safety access being granted.
    Type: Application
    Filed: August 24, 2017
    Publication date: February 28, 2019
    Inventors: David Barr, Dafna SHAOOL, Rahul GULATI, Pranjal BHUYAN
  • Publication number: 20190041440
    Abstract: In certain aspects of the disclosure, a frequency monitor includes a counter configured to receive a monitored clock signal, to count a number of periods of the monitored clock signal over a predetermined time duration, and to output a count value corresponding to the number of periods of the monitored clock signal. The frequency monitor also includes a comparator configured to receive the count value from the counter, to receive an expected count value, to compare the count value from the counter with the expected count value, and to output a pass status signal or a fail status signal based on the comparison.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 7, 2019
    Inventors: Bipin Duggal, Rahul Gulati, Sina Dena
  • Publication number: 20190018408
    Abstract: Devices and methods are disclosed for verifying the integrity of a sensing system. In one aspect, a vehicle includes an integrated circuit configured to support a message-based protocol between the integrated circuit and a sensor device associated with the vehicle, and send a sensor capability safety support message, as part of the message-based protocol, to determine one or more capabilities of the sensor device. The integrated circuit is also configured to receive, in response to the sensor capability safety support message, identification data corresponding to the sensor device, from the sensor device. The memory is configured to store a plurality of request data corresponding to a plurality of fields supported by the message-based protocol and associated with the integrated circuit and the sensor device capabilities, and store the response, including the identification data, from the sensor device.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 17, 2019
    Inventors: Rahul Gulati, Mainak Biswas, Pranjal Bhuyan, Anshuman Saxena
  • Publication number: 20180364051
    Abstract: Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors.
    Type: Application
    Filed: August 28, 2018
    Publication date: December 20, 2018
    Inventors: Rahul Gulati, Aishwarya Dubey, Nainala Vyagrheswarudu, Vasant Easwaran, Prashant Dinkar Karandikar, Mihir Moody
  • Patent number: 10134139
    Abstract: Techniques of this disclosure may include processing one or more regions-of-interest (ROI) of an input image through a model of a display processor, calculating a first data integrity check value on the one or more ROI of the input image after processing through the model, processing the input image by the display processor, calculating a second data integrity check value on the one or more ROI by the display processor after the display processor processes the input image, comparing the first data integrity check value to the second data integrity check value, and generating an interrupt if the comparison indicates that the first data integrity check value and the second data integrity check value do not match.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 20, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Rahul Gulati, Alex Kwang Ho Jong, John Chi Kit Wong, Sanjay Gupta, Ike Ikizyan
  • Publication number: 20180331692
    Abstract: Various additional and alternative aspects are described herein. In some aspects, the present disclosure provides a method of testing error-correcting code (ECC) logic. The method includes receiving data for storage in a memory. The method further includes receiving an address indicating a location in the memory to store the data. The method further includes determining if the received address matches at least one of one or more test addresses. The method further includes operating the ECC logic in a normal mode when the received address does not match at least one of the one or more test addresses. The method further includes operating the ECC logic in a test mode when the received address does match at least one of the one or more test addresses.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 15, 2018
    Inventors: Rahul GULATI, Palkesh JAIN, Pranjal BHUYAN, Mohammad Reza KAKOEE
  • Publication number: 20180285218
    Abstract: An integrated circuit (IC) chip can include a given core at a position in the IC chip that defines a given orientation, wherein the given core is designed to perform a particular function. The IC chip can include another core designed to perform the particular function. The other core can be flipped and rotated by 180 degrees relative to the given core such that the other core is asymmetrically oriented with respect to the given core. The IC chip can also include a compare unit configured to compare outputs of the given core and the other core to detect a fault in the IC chip.
    Type: Application
    Filed: May 29, 2018
    Publication date: October 4, 2018
    Inventors: Jasbir Singh Nayyar, Shashank Srinivasa Nuthakki, Rahul Gulati, Arun Shrimali
  • Patent number: 10089194
    Abstract: The disclosure relates to an apparatus and method for false pass detection in lockstep dual processing core systems, triple modular redundancy (TMR) systems, or other redundant processing systems. A false pass occurs when two processing cores generate matching data outputs, both of which are in error. A false pass may occur when the processing core are both subjected to substantially the same adverse condition, such as a supply voltage drop or a sudden temperature change or gradient. The apparatus includes processing cores configured to generate first and second data outputs and first and second timing violation signals. A voter-comparator validates the first and second data outputs if they match and the first and second timing violation signals indicate no timing violations. Otherwise, the voter comparator invalidates the first and second data outputs. Validated data outputs are used for performing additional operations, and invalidated data outputs may be discarded.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: October 2, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Palkesh Jain, Virendra Bansal, Rahul Gulati
  • Patent number: 10089172
    Abstract: Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: October 2, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahul Gulati, Aishwarya Dubey, Nainala Vyagrheswarudu, Vasant Easwaran, Prashant Dinkar Karandikar, Mihir Mody
  • Patent number: 10061644
    Abstract: Systems and methods are disclosed for error correction control (ECC) for a memory device comprising a data portion and an ECC portion, the memory device coupled to a system on a chip (SoC). The SoC includes an ECC cache. On receipt of a request to write a line of data to the memory, a determination is made if the data is compressible. If so, the data line is compressed. ECC bits are generated for the compressed or uncompressed data line. A determination is made if an ECC cache line is associated with the received data line. If the data line is compressible, the ECC bits are appended to the compressed data line and the appended data line is stored in the data portion of the memory. Otherwise, the ECC bits are stored in the ECC cache and the data line is stored in the data portion of the memory.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: August 28, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Nhon Quach, Mainak Biswas, Pranjal Bhuyan, Jeffrey Shabel, Robert Hardacker, Rahul Gulati, Mattheus Heddes
  • Publication number: 20180231609
    Abstract: A self-test controller includes a memory configured to store a test patterns, configuration registers, and a memory data component. The test patterns are encoded in the memory using various techniques in order to save storage space. By using the configuration parameters, the memory data component is configured to decode the test patterns and perform multiple built-in self-test on a multitude of test cores. The described techniques allow for built-in self-test to be performed dynamically while utilizing less space in the memory.
    Type: Application
    Filed: December 7, 2017
    Publication date: August 16, 2018
    Inventors: Arvind JAIN, Nishi BHUSHAN SINGH, Rahul GULATI, Pranjal BHUYAN, Rakesh Kumar KINGER, Roberto AVERBUJ