Patents by Inventor Ralf Hofmann

Ralf Hofmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9417515
    Abstract: An extreme ultraviolet mirror or blank production system includes: a first deposition system for depositing a planarization layer over a semiconductor substrate; a second deposition system for depositing an ultra-smooth layer over the planarization layer, the ultra-smooth layer having reorganized molecules; and a third deposition system for depositing a multi-layer stack over the ultra-smooth layer. The extreme ultraviolet blank includes: a substrate; a planarization layer over the substrate; an ultra-smooth layer over the planarization layer, the ultra-smooth layer having reorganized molecules; a multi-layer stack; and capping layers over the multi-layer stack. An extreme ultraviolet lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for placing an extreme ultraviolet mask blank with a planarization layer and an ultra-smooth layer over the planarization layer; and a wafer stage for placing a wafer.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 16, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Soumendra N. Barman, Cara Beasley, Abhijit Basu Mallick, Ralf Hofmann, Nitin K. Ingle
  • Publication number: 20160204451
    Abstract: A magnetic handling assembly for thin-film processing of a substrate, a system and method for assembling and disassembling a shadow mask to cover a top of a workpiece for exposure to a processing condition. The assembly may include a magnetic handling carrier and a shadow mask disposed over, and magnetically coupled to, the magnetic handling carrier to cover a top of a workpiece that is to be disposed between the shadow mask and the magnetic handling carrier when exposed to a processing condition. A system includes a first chamber with a first support to hold the shadow mask, a second support to hold a handling carrier, and an alignment system to align the shadow mask a workpiece to be disposed between the carrier and shadow mask. The first and second supports are moveable relative to each other.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Byung-Sung Leo KWAK, Stefan BANGERT, Ralf HOFMANN, Michael KOENIG
  • Publication number: 20160181134
    Abstract: A monitoring and deposition control system and method of operation thereof including: a deposition chamber for depositing a material layer on a substrate; a sensor array for monitoring deposition of the material layer for changes in a layer thickness of the material layer during deposition; and a processing unit for adjusting deposition parameters based on the changes in the layer thickness during deposition.
    Type: Application
    Filed: August 28, 2015
    Publication date: June 23, 2016
    Inventors: Edward W. Budiarto, Majeed A. Foad, Ralf Hofmann, Thomas Nowak, Todd Egan, Mehdi Vaez-Iravani
  • Patent number: 9354508
    Abstract: An integrated extreme ultraviolet (EUV) blank production system includes: a vacuum chamber for placing a substrate in a vacuum; a first deposition system for depositing a planarization layer having a planarized top surface over the substrate; and a second deposition system for depositing a multi-layer stack on the planarization layer without removing the substrate from the vacuum. The EUV blank is in an EUV lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the EUV source; a reticle stage for placing a EUV mask blank with a planarization layer; and a wafer stage for placing a wafer. The EUV blank includes: a substrate; a planarization layer to compensate for imperfections related to the surface of the substrate, the planarization layer having a flat top surface; and a multi-layer stack on the planarization layer.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: May 31, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Cara Beasley, Ralf Hofmann, Majeed Foad, Timothy Michaelson
  • Patent number: 9343347
    Abstract: Embodiments of a portable electrostatic chuck for use in a substrate process chamber to support an ultra-thin substrate when disposed thereon are provided herein. In some embodiments, a portable electrostatic chuck may include a carrier comprising a dielectric material; an electrically conductive layer disposed on a top surface of the carrier; a dielectric layer disposed over the electrically conductive layer, such that the electrically conductive layer is disposed between the carrier and the dielectric layer; and at least one conductor coupled to the electrically conductive layer, wherein the portable electrostatic chuck is configured to electrostatically retain the ultra-thin substrate to the portable electrostatic chuck, wherein the portable electrostatic chuck is further configured to be handled and moved by substrate processing equipment outside of the substrate process chamber, and wherein the portable electrostatic chuck is sized to support large ultra-thin substrates.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 17, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dieter Haas, Majeed A. Foad, Ralf Hofmann
  • Patent number: 9325007
    Abstract: A magnetic handling assembly for thin-film processing of a substrate, a system and method for assembling and disassembling a shadow mask to cover a top of a workpiece for exposure to a processing condition. The assembly may include a magnetic handling carrier and a shadow mask disposed over, and magnetically coupled to, the magnetic handling carrier to cover a top of a workpiece that is to be disposed between the shadow mask and the magnetic handling carrier when exposed to a processing condition. A system includes a first chamber with a first support to hold the shadow mask, a second support to hold a handling carrier, and an alignment system to align the shadow mask a workpiece to be disposed between the carrier and shadow mask. The first and second supports are moveable relative to each other.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 26, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Byung-Sung Leo Kwak, Stefan Bangert, Ralf Hofmann, Michael Koenig
  • Publication number: 20160011345
    Abstract: An extreme ultraviolet reflective element and method of manufacture includes a substrate; a multilayer stack on the substrate, the multilayer stack includes a plurality of reflective layer pairs having a first reflective layer formed from silicon and a second reflective layer having a preventative layer separating a lower amorphous layer and an upper amorphous layer; and a capping layer on and over the multilayer stack for protecting the multilayer stack by reducing oxidation and mechanical erosion.
    Type: Application
    Filed: April 24, 2015
    Publication date: January 14, 2016
    Inventors: Ralf Hofmann, Cara Beasley, Vinayak Vishwanath Hassan, Majeed A. Foad
  • Publication number: 20160011344
    Abstract: A method of manufacture of an extreme ultraviolet reflective element includes: providing a substrate; forming a multilayer stack on the substrate, the multilayer stack includes a plurality of reflective layer pairs having a first reflective layer and a second reflective layer for forming a Bragg reflector; and forming a capping layer on and over the multilayer stack, the capping layer formed from titanium oxide, ruthenium oxide, niobium oxide, ruthenium tungsten, ruthenium molybdenum, or ruthenium niobium, and the capping layer for protecting the multilayer stack by reducing oxidation and mechanical erosion.
    Type: Application
    Filed: April 24, 2015
    Publication date: January 14, 2016
    Inventors: Cara Beasley, Ralf Hofmann, Majeed A. Foad, Rudy Beckstrom, III
  • Publication number: 20160011502
    Abstract: An apparatus and method of manufacture of an extreme ultraviolet reflective element includes: a substrate; a multilayer stack on the substrate, the multilayer stack includes a plurality of reflective layer pairs having a first reflective layer formed from silicon and a second reflective layer formed from niobium or niobium carbide for forming a Bragg reflector; and a capping layer on and over the multilayer stack for protecting the multilayer stack by reducing oxidation and mechanical erosion.
    Type: Application
    Filed: April 24, 2015
    Publication date: January 14, 2016
    Inventors: Ralf Hofmann, Vinayak Vishwanath Hassan, Cara Beasley, Majeed A. Foad
  • Publication number: 20160011499
    Abstract: An extreme ultraviolet (EUV) mask blank production system includes: a substrate handling vacuum chamber for creating a vacuum; a substrate handling platform, in the vacuum, for transporting an ultra-low expansion substrate loaded in the substrate handling vacuum chamber; and multiple sub-chambers, accessed by the substrate handling platform, for forming an EUV mask blank includes: a multi-layer stack, formed above the ultra-low expansion substrate, for reflecting an extreme ultraviolet (EUV) light, and an absorber layer, formed above the multi-layer stack, for absorbing the EUV light at a wavelength of 13.5 nm includes the absorber layer has a thickness of less than 80nm and less than 2% reflectivity.
    Type: Application
    Filed: February 11, 2015
    Publication date: January 14, 2016
    Inventors: Vinayak Vishwanath Hassan, Majeed A. Foad, Cara Beasley, Ralf Hofmann
  • Publication number: 20160011500
    Abstract: An extreme ultraviolet (EUV) mask blank production system includes: a substrate handling vacuum chamber for creating a vacuum; a substrate handling platform, in the vacuum, for transporting an ultra-low expansion substrate loaded in the substrate handling vacuum chamber; and multiple sub-chambers, accessed by the substrate handling platform, for forming an EUV mask blank includes: a first sub-chamber for forming a multi-layer stack, above the ultra-low expansion substrate, for reflecting an extreme ultraviolet (EUV) light; and a second sub-chamber for forming a bi-layer absorber, formed above the multi-layer stack, for absorbing the EUV light at a wavelength of 13.5 nm provides a reflectivity of less than 1.9%.
    Type: Application
    Filed: February 11, 2015
    Publication date: January 14, 2016
    Inventors: Vinayak Vishwanath Hassan, Majeed A. Foad, Cara Beasley, Ralf Hofmann
  • Publication number: 20150235847
    Abstract: Embodiments described herein provide methods and apparatus for forming graphitic carbon such as graphene on a substrate. The method includes providing a precursor comprising a linear conjugated hydrocarbon, depositing a hydrocarbon layer from the precursor on the substrate, and forming graphene from the hydrocarbon layer by applying energy to the substrate. The precursor may include template molecules such as polynuclear aromatics, and may be deposited on the substrate by spinning on, by spraying, by flowing, by dipping, or by condensing. The energy may be applied as radiant energy, thermal energy, or plasma energy.
    Type: Application
    Filed: October 24, 2013
    Publication date: August 20, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Cara Beasley, Ralf Hofmann, Majeed A. Foad
  • Patent number: 9096927
    Abstract: Apparatus and method for physical vapor deposition are provided. In some embodiments, a cooling ring to cool a target in a physical vapor deposition chamber may include an annular body having a central opening; an inlet port coupled to the body; an outlet port coupled to the body; a coolant channel disposed in the body and having a first end coupled to the inlet port and a second end coupled to the outlet port; and a cap coupled to the body and substantially spanning the central opening, wherein the cap includes a center hole.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: August 4, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Brian West, Goichi Yoshidome, Ralf Hofmann
  • Patent number: 9018110
    Abstract: Methods and apparatus for radiation processing of semiconductor substrates using microwave or millimeter wave energy are provided. The microwave or millimeter wave energy may have a frequency between about 600 MHz and about 1 THz. Alternating current from a magnetron is coupled to a leaky microwave emitter that has an inner conductor and an outer conductor, the outer conductor having openings with a dimension smaller than a wavelength of the emitted radiation. The inner and outer conductors are separated by an insulating material. Interference patterns produced by the microwave emissions may be uniformized by phase modulating the power to the emitter and/or by frequency modulating the frequency of the power itself. Power from a single generator may be divided to two or more emitters by a power divider.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: April 28, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Michael W. Stowell, Majeed A. Foad, Ralf Hofmann, Wolfgang R. Aderhold, Stephen Moffatt
  • Patent number: 8904996
    Abstract: In a method for operating an injector of an internal combustion engine of a motor vehicle, in which an actuator for driving a component of the injector is provided, the actuator is controlled in such a way that at least two partial injections are brought about within a working cycle of the internal combustion engine. For each partial injection, a starting point in time of the partial injection is ascertained.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: December 9, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Guido Porten, Markus Amler, Matthias Walz, Alexandra Woerz, Ralf Hofmann, Arthur Pichlkostner
  • Publication number: 20140272684
    Abstract: A processing system includes: a vacuum chamber; a plurality of processing systems attached around the vacuum chamber; and a wafer handling system in the vacuum chamber for moving the wafer among the plurality of processing systems without exiting from a vacuum. A physical vapor deposition system for manufacturing an extreme ultraviolet blank comprising: a target comprising molybdenum, molybdenum alloy, or a combination thereof.
    Type: Application
    Filed: December 23, 2013
    Publication date: September 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Ralf Hofmann, Cara Beasley, Majeed Foad
  • Publication number: 20140268081
    Abstract: An integrated extreme ultraviolet blank production system includes: a vacuum chamber for placing a substrate in a vacuum; a deposition system for depositing a multi-layer stack without removing the substrate from the vacuum; and a treatment system for treating a layer on the multi-layer stack to be deposited as an amorphous metallic layer. A physical vapor deposition chamber for manufacturing an extreme ultraviolet mask blank includes: a target, comprising molybdenum alloyed with boron. An extreme ultraviolet lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for placing an extreme ultraviolet mask blank with a multi-layer stack having an amorphous metallic layer; and a wafer stage for placing a wafer. An extreme ultraviolet blank includes: a substrate; a multi-layer stack having an amorphous metallic layer; and capping layers over the multi-layer stack.
    Type: Application
    Filed: December 23, 2013
    Publication date: September 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Ralf Hofmann, Kevin Moraes
  • Publication number: 20140268080
    Abstract: An integrated extreme ultraviolet (EUV) blank production system includes: a vacuum chamber for placing a substrate in a vacuum; a first deposition system for depositing a planarization layer having a planarized top surface over the substrate; and a second deposition system for depositing a multi-layer stack on the planarization layer without removing the substrate from the vacuum. The EUV blank is in an EUV lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the EUV source; a reticle stage for placing a EUV mask blank with a planarization layer; and a wafer stage for placing a wafer. The EUV blank includes: a substrate; a planarization layer to compensate for imperfections related to the surface of the substrate, the planarization layer having a flat top surface; and a multi-layer stack on the planarization layer.
    Type: Application
    Filed: December 23, 2013
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Cara Beasley, Ralf Hofmann, Majeed Foad, Timothy Michaelson
  • Publication number: 20140268083
    Abstract: An extreme ultraviolet mirror or blank production system includes: a first deposition system for depositing a planarization layer over a semiconductor substrate; a second deposition system for depositing an ultra-smooth layer over the planarization layer, the ultra-smooth layer having reorganized molecules; and a third deposition system for depositing a multi-layer stack over the ultra-smooth layer. The extreme ultraviolet blank includes: a substrate; a planarization layer over the substrate; an ultra-smooth layer over the planarization layer, the ultra-smooth layer having reorganized molecules; a multi-layer stack; and capping layers over the multi-layer stack. An extreme ultraviolet lithography system includes: an extreme ultraviolet light source; a mirror for directing light from the extreme ultraviolet light source; a reticle stage for placing an extreme ultraviolet mask blank with a planarization layer and an ultra-smooth layer over the planarization layer; and a wafer stage for placing a wafer.
    Type: Application
    Filed: December 23, 2013
    Publication date: September 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Soumendra N. Barman, Cara Beasley, Abhijit Basu Mallick, Ralf Hofmann, Nitin K. Ingle
  • Patent number: 8782206
    Abstract: A method, a system and a computer program are disclosed for the load-balanced allocation of computer-aided medical task flows on at least one application server of a server farm. In at least one embodiment, request conditions and load information are configured in a configuration phase. The request conditions are then recorded in a load balancing phase. In addition the load information is recorded via load calculation agents. A load balancing service can then calculate a target application server, which according to the load information determined meets all recorded request conditions.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: July 15, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralf Hofmann, Andreas Schülke, Andreas Siwick, Hans-Martin Von Stockhausen