Patents by Inventor Ralph Michael Fay

Ralph Michael Fay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230383550
    Abstract: A building component manufacturing method may include providing an insulated structural component of a building. The insulated structural component may include a frame comprising a plurality of outer components coupled together to define an outer periphery of one or more sections. At least one of the sections may include a cavity. The method may include applying a pour-in-place insulation material within the cavity to insulate the component. The pour-in-place insulation material may transition from a liquid state to a solid state to form a first layer of insulation within the cavity. The method may include monitoring a fill level within the cavity while applying the pour-in-place insulation material. The method may include controlling a flow rate of the pour-in-place insulation material based on the monitoring of the fill level within the cavity.
    Type: Application
    Filed: May 24, 2022
    Publication date: November 30, 2023
    Inventors: Kathryn Miks, Ralph Michael Fay, Yusheng Zhao, Chanel Charbonneau
  • Patent number: 11614196
    Abstract: A fiberglass reinforced aerogel composite may include coarse glass fibers, glass microfibers, aerogel particles, and a binder. The coarse glass fibers may have an average fiber diameter between about 8 ?m and about 20 ?m. The glass microfibers may have an average fiber diameter between about 0.5 ?m and about 3 ?m. The glass microfibers may be homogenously dispersed within the coarse glass fibers. The aerogel particles may be homogenously dispersed within the coarse glass fibers and the glass microfibers. The fiberglass reinforced aerogel composite may include between about 50 wt. % and about 75 wt. % of the aerogel particles. The binder bonds the coarse glass fibers, the glass microfibers, and the aerogel particles together.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: March 28, 2023
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Guodong Zheng, Stanislav Kukatin, Luke S Weith
  • Patent number: 11143353
    Abstract: A fiber reinforced insulation product may include a first layer of fiber reinforced aerogel composite and a second layer of fiber reinforced aerogel composite. The first layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a first binder that may form a first binding framework that bonds the entangled fibers and the aerogel particles of the first layer together. The second layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a second binder that may form a second binding framework that bonds the entangled fibers and the aerogel particles of the second layer together. The fiber reinforced insulation product may further include a third binder that may form a third binding framework that bonds the first layer and the second layer together. The third binder may be dispersed throughout the first layer and the second layer.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: October 12, 2021
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Stanislav Kukatin
  • Patent number: 11142904
    Abstract: According to one embodiment, an insulated structure includes a frame comprising a plurality of wall studs coupled together and a plurality of foam boards attached to the frame to form a continuous insulative wall. A plurality of fasteners attaches the foam boards to the frame. Each fastener includes an elongate shaft and a cap. The elongate shaft is configured to penetrate through a foam board and into a wall stud to couple the components together. The cap is configured to be positioned atop a foam board to distribute a load relatively evenly to the foam board. A sealing tape is applied across seams between adjacent foam boards and over the fasteners' caps to seal the wall. A sealing caulk is applied to secondary fasteners and penetrations to seal the wall. In some embodiments, the structure has a fastener density of about 1 fastener per 243 in2 of foam board.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: October 12, 2021
    Assignee: Johns Manville
    Inventors: Kathryn Fink Miks, Ralph Michael Fay, Thomas S Calzavara, Francis John Babineau, Jr.
  • Publication number: 20210230865
    Abstract: A polyiso foam wall board includes a polyisocyanurate foam core produced from an isocyanate and a polyol. The wall board also includes a facer material applied to an outer surface of the polyisocyanurate foam core and an intumescent coating applied to the facer material.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 29, 2021
    Inventors: Diana Fisler, Ralph Michael Fay, Stanislav Kukatin
  • Patent number: 10889023
    Abstract: A method for producing an insulation product may include providing an aqueous solution. The aqueous solution may include coarse glass fibers, glass microfibers, aerogel particles, and a binder. The coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may be uniformly dispersed in the aqueous solution and may form a slurry. The method may further include removing at least a portion of water from the slurry such that the coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may form a wet laid mixture. The method may also include curing the wet laid mixture to cure the binder and bond the coarse glass fibers, the glass microfibers, and the aerogel particles together to form a fiberglass reinforced aerogel composite. The fiberglass reinforced aerogel composite may include between about 50 wt. % and about 75 wt. % of the aerogel particles.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: January 12, 2021
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Guodong Zheng, Stanislav Kukatin, Luke S Weith
  • Patent number: 10889981
    Abstract: Systems and methods for making a waterproofed concrete wall assembly, such as for a basement wall. A form is constructed. At least a first side of the form is made of one or more boards having a polymer foam and a fibrous facer. At least some of the boards have perimeter edges shaped such that some adjacent boards overlap at the shaped perimeter edges. Concrete is poured into the gap between the sides of the form, and is allowed to harden. The other side of the form may be removed, while leaving the boards of the first side of the form in place adjacent the hardened concrete. Some of the concrete is infused into the fibrous facers of at least some of the boards.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: January 12, 2021
    Assignee: Johns Manville
    Inventors: Diana Fisler, Zebonie Sukle, ChangQing Shen, Guodong Zheng, Duane Paradis, Ralph Michael Fay
  • Patent number: 10889096
    Abstract: Embodiments of the invention provide a facer used as protective covering for an insulation product. The facer may include a metallic foil layer, a scrim layer, and a paper layer positioned adjacent the scrim layer. The facer may also include a polypropylene material forming a polypropylene layer positioned adjacent the paper layer and heat bonded to an exposed major surface of the paper layer such that a portion of the polypropylene extends into pores of the paper layer to assist in coupling the polypropylene material to the paper layer.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: January 12, 2021
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Anthony Edward Moore, Edward Albert Bright
  • Patent number: 10836073
    Abstract: A method for producing an insulation product may include providing an aqueous solution. The aqueous solution may include coarse glass fibers, glass microfibers, aerogel particles, and a binder. The coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may be uniformly dispersed in the aqueous solution and may form a slurry. The method may further include removing at least a portion of water from the slurry such that the coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may form a wet laid mixture. The method may also include curing the wet laid mixture to cure the binder and bond the coarse glass fibers, the glass microfibers, and the aerogel particles together to form a fiberglass reinforced aerogel composite. The fiberglass reinforced aerogel composite may include between about 50 wt. % and about 75 wt. % of the aerogel particles.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: November 17, 2020
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Guodong Zheng, Stanislav Kukatin, Luke S Weith
  • Publication number: 20200353642
    Abstract: A method for producing an insulation product may include providing an aqueous solution. The aqueous solution may include coarse glass fibers, glass microfibers, aerogel particles, and a binder. The coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may be uniformly dispersed in the aqueous solution and may form a slurry. The method may further include removing at least a portion of water from the slurry such that the coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may form a wet laid mixture. The method may also include curing the wet laid mixture to cure the binder and bond the coarse glass fibers, the glass microfibers, and the aerogel particles together to form a fiberglass reinforced aerogel composite. The fiberglass reinforced aerogel composite may include between about 50 wt. % and about 75 wt. % of the aerogel particles.
    Type: Application
    Filed: July 30, 2020
    Publication date: November 12, 2020
    Inventors: Ralph Michael Fay, Guodong Zheng, Stanislav Kukatin, Luke S. Weith
  • Patent number: 10781976
    Abstract: An insulation product for a pipe or vessel having at least one aerogel insulation layer, an additional insulation layer positioned around the at least one aerogel insulation layer, and a protective cladding layer surrounding the at least one aerogel insulation layer and the additional insulation layer.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: September 22, 2020
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Jason J Koravos, Dennis A Kopp
  • Patent number: 10774976
    Abstract: A vapor-barrier stop pre-treated piping insulation system including an insulation segment, a vapor-barrier stop, and a sealant. The insulation segment includes a cylindrical exterior surface, a cylindrical exterior surface, a first end surface, a second end surface, at least two ledge surfaces, and a wall extending between the cylindrical exterior surface and the cylindrical interior surface. The vapor-barrier stop is applied prior to installation of the insulation segment and extends, starting from at least the first end surface, over the cylindrical interior surface, the cylindrical exterior surface, the at least two ledge surfaces, and the first end surface along the insulation segment towards the second end surface. The vapor-barrier stop is configured to impede vapor-exchange through the vapor-barrier stop.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: September 15, 2020
    Assignee: Johns Manville
    Inventor: Ralph Michael Fay
  • Publication number: 20200200327
    Abstract: An insulation product for a pipe or vessel having at least one aerogel insulation layer, an additional insulation layer positioned around the at least one aerogel insulation layer, and a protective cladding layer surrounding the at least one aerogel insulation layer and the additional insulation layer.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Inventors: Ralph Michael Fay, Jason J. Koravos, Dennis A. Kopp
  • Publication number: 20200182394
    Abstract: A fiber reinforced insulation product may include a first layer of fiber reinforced aerogel composite and a second layer of fiber reinforced aerogel composite. The first layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a first binder that may form a first binding framework that bonds the entangled fibers and the aerogel particles of the first layer together. The second layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a second binder that may form a second binding framework that bonds the entangled fibers and the aerogel particles of the second layer together. The fiber reinforced insulation product may further include a third binder that may form a third binding framework that bonds the first layer and the second layer together. The third binder may be dispersed throughout the first layer and the second layer.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Inventors: Ralph Michael Fay, Stanislav Kukatin
  • Patent number: 10612717
    Abstract: A fiber reinforced insulation product may include a first layer of fiber reinforced aerogel composite and a second layer of fiber reinforced aerogel composite. The first layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a first binder that may form a first binding framework that bonds the entangled fibers and the aerogel particles of the first layer together. The second layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a second binder that may form a second binding framework that bonds the entangled fibers and the aerogel particles of the second layer together. The fiber reinforced insulation product may further include a third binder that may form a third binding framework that bonds the first layer and the second layer together. The third binder may be dispersed throughout the first layer and the second layer.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: April 7, 2020
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Stanislav Kukatin
  • Publication number: 20200101656
    Abstract: Molds for forming fiber reinforced insulation and methods of using the molds are described. One exemplary mold may include an upper mold and a lower mold. The upper mold and the lower mold may be coupleable to define a mold cavity for receiving therein a fiber reinforced insulation preform. The upper mold may include a plurality of apertures that may be configured to allow moisture from the fiber reinforced insulation preform to pass through the upper mold while substantially preventing fibers from the fiber reinforced insulation preform from passing through the upper mold such that the fiber reinforced insulation preform dries and cures to form the fiber reinforced insulation product. The plurality of apertures may collectively define an open area of at least 20% of an inner surface area of the upper mold that may contact the fiber reinforced insulation preform.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 2, 2020
    Inventors: Ralph Michael Fay, Andrew Pfefer, Stanislav Kukatin, Guodong Zheng
  • Publication number: 20200078981
    Abstract: A method for producing an insulation product may include providing an aqueous solution. The aqueous solution may include coarse glass fibers, glass microfibers, aerogel particles, and a binder. The coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may be uniformly dispersed in the aqueous solution and may form a slurry. The method may further include removing at least a portion of water from the slurry such that the coarse glass fibers, the glass microfibers, the aerogel particles, and the binder may form a wet laid mixture. The method may also include curing the wet laid mixture to cure the binder and bond the coarse glass fibers, the glass microfibers, and the aerogel particles together to form a fiberglass reinforced aerogel composite. The fiberglass reinforced aerogel composite may include between about 50 wt. % and about 75 wt. % of the aerogel particles.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 12, 2020
    Inventors: Ralph Michael Fay, Guodong Zheng, Stanislav Kukatin, Luke S Weith
  • Publication number: 20200080681
    Abstract: A fiber reinforced insulation product may include a first layer of fiber reinforced aerogel composite and a second layer of fiber reinforced aerogel composite. The first layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a first binder that may form a first binding framework that bonds the entangled fibers and the aerogel particles of the first layer together. The second layer may include entangled fibers, aerogel particles dispersed within the entangled fibers, and a second binder that may form a second binding framework that bonds the entangled fibers and the aerogel particles of the second layer together. The fiber reinforced insulation product may further include a third binder that may form a third binding framework that bonds the first layer and the second layer together. The third binder may be dispersed throughout the first layer and the second layer.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 12, 2020
    Inventors: Ralph Michael Fay, Stanislav Kukatin
  • Publication number: 20200080680
    Abstract: A fiberglass reinforced aerogel composite may include coarse glass fibers, glass microfibers, aerogel particles, and a binder. The coarse glass fibers may have an average fiber diameter between about 8 ?m and about 20 ?m. The glass microfibers may have an average fiber diameter between about 0.5 ?m and about 3 ?m. The glass microfibers may be homogenously dispersed within the coarse glass fibers. The aerogel particles may be homogenously dispersed within the coarse glass fibers and the glass microfibers. The fiberglass reinforced aerogel composite may include between about 50 wt. % and about 75 wt. % of the aerogel particles. The binder bonds the coarse glass fibers, the glass microfibers, and the aerogel particles together.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 12, 2020
    Inventors: Ralph Michael Fay, Guodong Zheng, Stanislav Kukatin, Luke S. Weith
  • Publication number: 20200080301
    Abstract: According to one embodiment, an insulated structure includes a frame comprising a plurality of wall studs coupled together and a plurality of foam boards attached to the frame to form a continuous insulative wall. A plurality of fasteners attaches the foam boards to the frame. Each fastener includes an elongate shaft and a cap. The elongate shaft is configured to penetrate through a foam board and into a wall stud to couple the components together. The cap is configured to be positioned atop a foam board to distribute a load relatively evenly to the foam board. A sealing tape is applied across seams between adjacent foam boards and over the fasteners' caps to seal the wall. A sealing caulk is applied to secondary fasteners and penetrations to seal the wall. In some embodiments, the structure has a fastener density of about 1 fastener per 243 in2 of foam board.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: Kathryn Fink Miks, Ralph Michael Fay, Thomas S Calzavara, Francis John Babineau, JR.