Patents by Inventor Randall C. Gray

Randall C. Gray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150260548
    Abstract: An interface for processing a variable reluctance sensor signal provided by a variable reluctance sensor including an integrator, an arming comparator and a detect circuit. The integrator includes an input for receiving the variable reluctance sensor signal and an output providing an integrated signal indicative of total flux change of the variable reluctance sensor. The arming comparator compares the integrated signal with a predetermined arming threshold and provides an armed signal indicative thereof. The detect circuit provides a reset signal after the armed signal is provided to reset the integrator. A corresponding method of processing the variable reluctance sensor signal is also described.
    Type: Application
    Filed: May 27, 2015
    Publication date: September 17, 2015
    Inventors: JOHN M. PIGOTT, FRED T. BRAUCHLER, WILLIAM E. EDWARDS, MIKE R. GARRARD, RANDALL C. GRAY, JOHN M. HALL
  • Publication number: 20150255537
    Abstract: The embodiments described herein provide a semiconductor device layout and method that can be utilized in a wide variety of semiconductor devices. In one embodiment a semiconductor device is provided that includes a plurality of deep trench isolation structures that define and surround a first plurality of first trench-isolated regions in the substrate, and further define a second plurality of second trench-isolated regions in the substrate. The first plurality of first trench-isolated regions is arranged in a plurality of first columns, with each of the first columns including at least two of the first plurality of first trench-isolated regions. Likewise, the plurality of first columns are interleaved with the second trench-isolated regions to alternate in an array such that a second trench-isolated region is between consecutive first columns in the array and such that at least two first trench-isolated regions are between consecutive second trench-isolated regions in the array.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 10, 2015
    Inventors: John M. PIGOTT, Brent D. ROGERS, Randall C. GRAY
  • Publication number: 20150243365
    Abstract: The embodiments described herein provide antifuse devices and methods that can be utilized in a wide variety of semiconductor devices. In one embodiment a semiconductor device is provided that includes an antifuse, a first diode coupled with the antifuse in a parallel combination, and a second diode coupled in series with the parallel combination. In such an embodiment the first diode effectively provides a bypass current path that can reduce the voltage across the antifuse when other antifuses are being programmed. As such, these embodiments can provide improved ability to tolerate programming voltages without damage or impairment of reliability.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: John M. PIGOTT, Randall C. GRAY
  • Patent number: 9103847
    Abstract: An interface for processing a variable reluctance sensor signal provided by a variable reluctance sensor including an integrator, an arming comparator and a detect circuit. The integrator includes an input for receiving the variable reluctance sensor signal and an output providing an integrated signal indicative of total flux change of the variable reluctance sensor. The arming comparator compares the integrated signal with a predetermined arming threshold and provides an armed signal indicative thereof. The detect circuit provides a reset signal after the armed signal is provided to reset the integrator. A corresponding method of processing the variable reluctance sensor signal is also described.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: August 11, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: John M. Pigott, Fred T. Brauchler, William E. Edwards, Mike R. Garrard, Randall C. Gray, John M. Hall
  • Publication number: 20150198666
    Abstract: A method of switch detection is disclosed that comprises, enabling a low power mode on a switch detection device, activating a first detection circuit for detecting, at a first expiration of a first polling time interval, a first switch state of a first switch having a first priority level, the first switch state including one of a first open state and a first closed state, comparing the detected first switch state with a prior first switch state, and activating a second detection circuit for detecting, at a second expiration of a second polling time interval, a second switch state of a second switch having a second priority level, the second switch including one of a second open state and a second closed state, and the second polling time interval being greater than the first polling time interval, and the second priority level being different from the first priority level.
    Type: Application
    Filed: January 10, 2014
    Publication date: July 16, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: William E. Edwards, Anthony F. Andresen, Randall C. Gray
  • Publication number: 20150171934
    Abstract: Embodiments of inductive communication devices include first and second IC die and an inductive coupling substrate. The first IC die has a first coil. The inductive coupling substrate has a second coil and a first signal communication interface (e.g., a third coil or a contact). The second IC die has a second signal communication interface (e.g., a fourth coil or a contact). The first IC die and the inductive coupling substrate are arranged so that the first and second coils are aligned across a gap between the first IC die and the inductive coupling substrate. A dielectric component is positioned within the gap between the first and second coils to galvanically isolate the first IC die and the inductive coupling substrate. During operation, signals are conveyed between the first and second IC die through inductive coupling between the coils and communication through the signal communication interfaces.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 18, 2015
    Inventors: FRED T. BRAUCHLER, RANDALL C. GRAY
  • Publication number: 20150075401
    Abstract: A diagnostic circuit is provided that includes a FET having a source connected to a first node, a drain, and a gate; a first switch connecting a current-supply node to one of the gate and a second node; a second switch connecting the first node and the second node; a variable current source providing one of a drive current and a test current to the current-supply node; a fire current source configured to provide a fire current to the drain; an error-detecting circuit connected to the second node, a reference terminal, and an error node, the error-detecting circuit generating an error signal to the error node indicating whether an error-detecting parameter at the second node exceeds a reference parameter at the reference terminal; and a control circuit generating control signals to control the variable current source, and the first and second switches.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: William E. EDWARDS, Randall C. GRAY
  • Publication number: 20150067429
    Abstract: A method of testing a semiconductor device includes forming a test circuit over a semiconductor substrate. The test circuit includes a plurality of interconnects electrically connected to a set of device structures supported by the semiconductor substrate. A test, such as a gate stress or leakage current test, of each device structure is conducted with the test circuit. The plurality of interconnects are removed after conducting the test.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: William E. Edwards, Randall C. Gray, Christopher B. Lesher
  • Patent number: 8970209
    Abstract: A variable reluctance sensor system for processing a variable reluctance sensor signal including an arming comparator and an arming circuit. The arming comparator compares the variable reluctance sensor signal with an arming threshold which decreases proportional to 1/t from a predetermined maximum level and asserts an armed signal when the variable reluctance sensor signal reaches the arming threshold. The arming threshold may be decreased based on a scaling factor multiplied by 1/t to ensure detection of each pulse of the variable reluctance sensor signal. The arming threshold may decrease to a predetermined minimum level sufficiently low to intersect the variable reluctance sensor signal and sufficiently high relative to an expected noise level. The arming threshold is reset in response to a timing event, such as zero crossing of the variable reluctance sensor signal.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: March 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: John M. Pigott, Fred T. Brauchler, William E. Edwards, Mike R. Garrard, Randall C. Gray, John M. Hall
  • Publication number: 20150001948
    Abstract: Embodiments of inductive communication devices include first and second galvanically isolated IC die and a dielectric structure. Each IC die has a coil proximate to a first surface of the IC die. The IC die are arranged so that the first surfaces of the IC die face each other, and the first coil and the second coil are aligned across a gap between the first and second IC die. The dielectric structure is positioned within the gap directly between the first and second coils, and a plurality of conductive structures are positioned in or on the dielectric structure and electrically coupled with the second IC die. The conductive structures include portions configured to function as bond pads, and the bond pads may be coupled to package leads using wirebonds. During operation, signals are conveyed between the IC die through inductive coupling between the coils.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Fred T. BRAUCHLER, John M. PIGOTT, Darrel R. FREAR, Vivek GUPTA, Randall C. GRAY, Norman L. OWENS, Carl E. D'ACOSTA
  • Publication number: 20150004902
    Abstract: Embodiments of inductive communication devices include first and second galvanically isolated IC die. The first IC die has a first coil proximate to a first surface of the first IC die, and the second IC die has a second coil proximate to a first surface of the second IC die. The first and second IC die are arranged so that the first surfaces of the first and second IC die face each other, and the first coil and the second coil are aligned across a gap between the first and second IC die. One or more dielectric components are positioned within the gap directly between the first and second coils. During operation, a first signal is provided to the first coil, and the first coil converts the signal into a time-varying magnetic field. The magnetic field couples with the second coil, which produces a corresponding second signal.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: John M. Pigott, Fred T. Brauchler, Darrel R. Frear, Vivek Gupta, Randall C. Gray, Norman L. Owens, Carl E. D'Acosta
  • Publication number: 20140035561
    Abstract: An interface for processing a variable reluctance sensor signal provided by a variable reluctance sensor including an integrator, an arming comparator and a detect circuit. The integrator includes an input for receiving the variable reluctance sensor signal and an output providing an integrated signal indicative of total flux change of the variable reluctance sensor. The arming comparator compares the integrated signal with a predetermined arming threshold and provides an armed signal indicative thereof. The detect circuit provides a reset signal after the armed signal is provided to reset the integrator. A corresponding method of processing the variable reluctance sensor signal is also described.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: John M. Pigott, Fred T. Brauchler, William E. Edwards, Mike R. Garrard, Randall C. Gray, John M. Hall
  • Publication number: 20130328554
    Abstract: A variable reluctance sensor system for processing a variable reluctance sensor signal including an arming comparator and an arming circuit. The arming comparator compares the variable reluctance sensor signal with an arming threshold which decreases proportional to 1/t from a predetermined maximum level and asserts an armed signal when the variable reluctance sensor signal reaches the arming threshold. The arming threshold may be decreased based on a scaling factor multiplied by 1/t to ensure detection of each pulse of the variable reluctance sensor signal. The arming threshold may decrease to a predetermined minimum level sufficiently low to intersect the variable reluctance sensor signal and sufficiently high relative to an expected noise level. The arming threshold is reset in response to a timing event, such as zero crossing of the variable reluctance sensor signal.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: John M. Pigott, Fred T. Brauchler, William E. Edwards, Mike R. Garrard, Randall C. Gray, John M. Hall
  • Patent number: 8278932
    Abstract: In an integrated circuit, a state of a switch coupled to the integrated circuit is determined by comparing a switch voltage at a first terminal of the switch to a reference voltage at a first time. If the switch voltage is higher than the reference voltage, the switch is determined to be in a first state. If the switch voltage is lower than the reference voltage, the switch voltage is stored in a storage element to produce a stored voltage. The stored voltage is compared to the switch voltage at a second time after the first time. A determination is made that the switch is in the first state if the switch voltage is higher than the stored voltage at the second time. A determination is made that the switch is in a second state if the switch voltage is not higher than the stored voltage at the second time.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: October 2, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bryan Quinones, Randall C. Gray
  • Publication number: 20110115527
    Abstract: In an integrated circuit, a state of a switch coupled to the integrated circuit is determined by comparing a switch voltage at a first terminal of the switch to a reference voltage at a first time. If the switch voltage is higher than the reference voltage, the switch is determined to be in a first state. If the switch voltage is lower than the reference voltage, the switch voltage is stored in a storage element to produce a stored voltage. The stored voltage is compared to the switch voltage at a second time after the first time. A determination is made that the switch is in the first state if the switch voltage is higher than the stored voltage at the second time. A determination is made that the switch is in a second state if the switch voltage is not higher than the stored voltage at the second time.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 19, 2011
    Inventors: Bryan Quinones, Randall C. Gray
  • Patent number: 7929266
    Abstract: An electronic device can be used with a system, such as an ignition system, that operates a relatively high voltage. The device can include a signal clamping control module that can include a signal reference module and a feedback control module. The signal reference module is operable to provide a reference signal to the feedback control module. The feedback control can be configured to receive a scaled signal from a signal scaling module, wherein the scaled signal is representative of a signal at a current carrying electrode of a power transistor. Based on the comparison of the reference signal to the scaled signal, the measurement module provides one or more signals to a control signal drive module. The feedback control module provides a control electrode signal to a control electrode of the power transistor.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 19, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ibrahim Kandah, Shiraz J. Contractor, William E. Edwards, Randall C. Gray
  • Publication number: 20090161287
    Abstract: An electronic device can be used with a system, such as an ignition system, that operates a relatively high voltage. The device can include a signal clamping control module that can include a signal reference module and a feedback control module. The signal reference module is operable to provide a reference signal to the feedback control module. The feedback control can be configured to receive a scaled signal from a signal scaling module, wherein the scaled signal is representative of a signal at a current carrying electrode of a power transistor. Based on the comparison of the reference signal to the scaled signal, the measurement module provides one or more signals to a control signal drive module. The feedback control module provides a control electrode signal to a control electrode of the power transistor.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Ibrahim Kandah, Shiraz J. Contractor, William E. Edwards, Randall C. Gray
  • Patent number: 7538559
    Abstract: A system (28) includes a microelectronic device (10) including first transistors (22) and second transistors (24), a power supply (40) electrically connected to the first and second transistors to provide power to the first and second transistors such that current flows through the first and second transistors, a switch (32) in operable communication with the second transistors, the switch allowing current to flow from the power supply through the second transistors when in a first mode of operation and preventing current from flowing from the power supply through the second transistors when in a second mode of operation, control circuitry in operable communication with the switch, and current sensing circuitry coupled to the first transistors to detect a test amount of current flowing through at least one of the first transistors when the switch is in the first mode of operation.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: May 26, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul T. Bennett, Randall C. Gray
  • Patent number: 7423416
    Abstract: A voltage regulator includes first and second MOS transistors and a bipolar transistor. The first MOS transistor has a first conductivity type and has a drain coupled to a first power supply voltage terminal, a gate for receiving a first bias voltage, and a source. The second MOS transistor has a second conductivity type and has a source coupled to the first power supply voltage terminal, a drain coupled to the source of the first MOS transistor, and a gate for receiving a second bias voltage. The bipolar transistor has a collector coupled to the source of the first MOS transistor, a base for receiving a third bias voltage, and an emitter for providing an output voltage. The first MOS transistor and the second MOS transistor control a voltage level at the collector of the bipolar transistor in response to a varying power supply voltage provided to the first power supply voltage terminal.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: September 9, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bryan Quinones, William E. Edwards, Randall C. Gray
  • Patent number: 7365584
    Abstract: Apparatus and methods that reduce the amount of conducted/radiated emissions from a power switch (200) when a transistor (210) is switched OFF are disclosed. In addition, apparatus and methods that reduce the slew rate in a power switch when the power switch is switched off are disclosed. The apparatus comprises a transistor (210) including an inductive load (230) coupled to the transistor, a plurality of current sources (222, 224) coupled to the gate of the transistor, and a clamp (250) coupled to either the gate and the drain of the transistor, or to the gate and to ground depending on the location of the inductive load, wherein the clamp comprises a resistive element (260) to increase the voltage of the clamp when current flows through the clamp, and wherein the increased voltage causes the apparatus to include a different slew rate.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: April 29, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul T. Bennett, Randall C. Gray, Matthew D. Thompson