Patents by Inventor Ravi P. Singh

Ravi P. Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230076599
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: March 9, 2023
    Inventors: Ching-Yu Hung, Ravi P. Singh, Jagadeesh Sankaran, Yen-Te Shih, Ahmad Itani
  • Patent number: 11593001
    Abstract: A VPU and associated components include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators are used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer is included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU executes a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 28, 2023
    Assignee: NVIDIA Corporation
    Inventors: Ching-Yu Hung, Ravi P Singh, Jagadeesh Sankaran, Yen-Te Shih, Ahmad Itani
  • Patent number: 11593290
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 28, 2023
    Assignee: NVIDIA Corporation
    Inventors: Ahmad Itani, Yen-Te Shih, Jagadeesh Sankaran, Ravi P Singh, Ching-Yu Hung
  • Publication number: 20230047233
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 16, 2023
    Inventors: Ching-Yu Hung, Ravi P Singh, Jagadeesh Sankaran, Yen-Te Shih, Ahmad Itani
  • Publication number: 20230046642
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 16, 2023
    Inventors: Ching-Yu Hung, Ravi P Singh, Jagadeesh Sankaran, Yen-Te Shih, Ahmad Itani
  • Publication number: 20230050062
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 16, 2023
    Inventors: Ching-Yu Hung, Ravi P. Singh, Jagadeesh Sankaran, Yen-Te Shih, Ahmad Itani
  • Publication number: 20230049442
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 16, 2023
    Inventors: Ching-Yu Hung, Ravi P. Singh, Jagadeesh Sankaran, Yen-Te Shih, Ahmad Itani
  • Publication number: 20230053042
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 16, 2023
    Inventors: Ching-Yu Hung, Ravi P. Singh, Jagadeesh Sankaran, Ahmad Itani, Yen-Te Shih
  • Publication number: 20230050902
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 16, 2023
    Inventors: Ravi P Singh, Ching-Yu Hung, Jagadeesh Sankaran, Ahmad Itani, Yen-Te Shih
  • Publication number: 20230048836
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 16, 2023
    Inventors: Ahmad Itani, Yen-Te Shih, Jagadeesh Sankaran, Ravi P Singh, Ching-Yu Hung
  • Publication number: 20230042858
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 9, 2023
    Inventors: Ravi P. Singh, Ching-Yu Hung, Jagadeesh Sankaran, Ahmad Itani, Yen-Te Shih
  • Publication number: 20230042226
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 9, 2023
    Inventors: Ahmad Itani, Yen-Te Shih, Jagadeesh Sankaran, Ravi P. Singh, Ching-Yu Hung
  • Publication number: 20230045443
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 9, 2023
    Inventors: Ching-Yu Hung, Ravi P. Singh, Jagadeesh Sankaran, Yen-Te Shih, Ahmad Itani
  • Publication number: 20230037738
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 9, 2023
    Inventors: Ahmad Itani, Yen-Te Shih, Jagadeesh Sankaran, Ravi P. Singh, Ching-Yu Hung
  • Patent number: 11573921
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 7, 2023
    Assignee: NVIDIA Corporation
    Inventors: Ahmad Itani, Yen-Te Shih, Jagadeesh Sankaran, Ravi P Singh, Ching-Yu Hung
  • Patent number: 11573795
    Abstract: In various examples, a VPU and associated components may be optimized to improve VPU performance and throughput. For example, the VPU may include a min/max collector, automatic store predication functionality, a SIMD data path organization that allows for inter-lane sharing, a transposed load/store with stride parameter functionality, a load with permute and zero insertion functionality, hardware, logic, and memory layout functionality to allow for two point and two by two point lookups, and per memory bank load caching capabilities. In addition, decoupled accelerators may be used to offload VPU processing tasks to increase throughput and performance, and a hardware sequencer may be included in a DMA system to reduce programming complexity of the VPU and the DMA system. The DMA and VPU may execute a VPU configuration mode that allows the VPU and DMA to operate without a processing controller for performing dynamic region based data movement operations.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 7, 2023
    Assignee: NVIDIA Corporation
    Inventors: Ahmad Itani, Yen-Te Shih, Jagadeesh Sankaran, Ravi P Singh, Ching-Yu Hung
  • Publication number: 20160321074
    Abstract: In one embodiment of the present invention, a programmable vision accelerator enables applications to collapse multi-dimensional loops into one dimensional loops. In general, configurable components included in the programmable vision accelerator work together to facilitate such loop collapsing. The configurable elements include multi-dimensional address generators, vector units, and load/store units. Each multi-dimensional address generator generates a different address pattern. Each address pattern represents an overall addressing sequence associated with an object accessed within the collapsed loop. The vector units and the load store units provide execution functionality typically associated with multi-dimensional loops based on the address pattern. Advantageously, collapsing multi-dimensional loops in a flexible manner dramatically reduces the overhead associated with implementing a wide range of computer vision algorithms.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 3, 2016
    Inventors: Ching Y. HUNG, Jagadeesh SANKARAN, Ravi P. SINGH, Stanley TZENG
  • Patent number: 7472259
    Abstract: In one embodiment, a pipelined processor is described that includes an execution pipeline having a plurality of stages and a multi-cycle instruction (MCI) controller adapted to assert a stall signal to stall the multi-cycle instruction within one of the stages of the execution pipeline. The MCI controller is adapted to issue a plurality of instructions to subsequent stages in the pipeline while the multi-cycle instruction is stalled.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: December 30, 2008
    Assignee: Analog Devices, Inc.
    Inventors: Gregory A. Overkamp, Charles P. Roth, Ravi P. Singh
  • Patent number: 7366876
    Abstract: In one embodiment, a state machine receives a plurality of instructions from an instruction register to be processed by a digital signal processor. After receiving a single RTI, the state machine loads each of the plurality of instructions one at time and determines the validity of each instruction. If the instruction is valid, the state machine transfers the instruction to the decoder. If the instruction is invalid or if a no-operation instruction is present, the state machine discards the instruction and immediately loads the next instruction.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 29, 2008
    Assignee: Analog Devices, Inc.
    Inventors: Charles P. Roth, Ravi P Singh, Gregory A. Overkamp, Tien Dinh
  • Patent number: 7360059
    Abstract: In one embodiment, a digital signal processor includes look ahead logic to decrease the number of bubbles inserted in the processing pipeline. The processor receives data containing instructions in a plurality of buffers and decodes the size of a first instruction. The beginning of a second instruction is determined based on the size of the first instruction. The size of the second instruction is decoded and the processor determines whether loading the second instruction will deplete one of the plurality of buffers.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: April 15, 2008
    Assignee: Analog Devices, Inc.
    Inventors: Thomas Tomazin, William C. Anderson, Charles P. Roth, Kayla Chalmers, Juan G. Revilla, Ravi P. Singh