Patents by Inventor Raymond J. Beffa

Raymond J. Beffa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6363329
    Abstract: An inventive method of manufacturing IC devices from semiconductor wafers includes providing the wafers and fabricating IC's on the wafers. At probe, a unique fuse ID is stored in each IC, and an electronic wafer map is electronically stored for each wafer indicating the locations of good and bad IC's on the wafer and the fuse ID's of the IC's on the wafer. Each IC is then separated from its wafer to form an IC die, and the IC dice are assembled into IC devices. At the opens/shorts test at the end of assembly, the fuse ID of each IC in each device is automatically retrieved so the wafer map of the IC device may be accessed and evaluated to identify any IC devices containing bad IC's that have accidentally been assembled into IC devices. These “bad” IC devices are discarded, and the remaining IC devices continue on to back-end testing.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: March 26, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Publication number: 20020033360
    Abstract: A method for sorting integrated circuit (IC) devices of the type having a substantially unique identification (ID) code, such as a fuse ID, includes automatically reading the ID code of each of the IC devices and sorting the IC devices in accordance with their automatically read ID codes.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 21, 2002
    Inventor: Raymond J. Beffa
  • Publication number: 20020030507
    Abstract: A circuit for isolating a short-circuited integrated circuit (IC) formed on the surface of a semiconductor wafer from other ICs formed on the wafer that are interconnected with the shortcircuited IC includes control circuitry within the short-circuited IC for sensing the short circuit. The control circuitry may sense the short circuit in a variety of ways, including sensing excessive current drawn by the short-circuited IC, and sensing an abnormally low or high voltage within the short-circuited IC. Switching circuitry also within the short-circuited IC selectively isolates the short-circuited IC from the other ICs on the wafer in response to the control circuitry sensing the short circuit. As a result, if the wafer is under probe test, for example, testing can continue uninterrupted on the other ICs while the short-circuited IC is isolated.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 14, 2002
    Inventors: Warren M. Farnworth, William K. Waller, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Patent number: 6350959
    Abstract: An inventive method for sorting integrated circuit (IC) devices of the type having a substantially unique identification (ID) code, such as a fuse ID, includes automatically reading the ID code of each of the IC devices, and sorting the IC devices in accordance with their automatically read ID codes. The inventive method can be used in conjunction with an IC manufacturing process that includes providing semiconductor wafers, fabricating the IC's on each of the wafers, causing each of the IC's to store its ID code, separating each of the IC's from its wafer to form IC dice, assembling the IC dice into IC devices, and testing the IC devices.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: February 26, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Publication number: 20020008984
    Abstract: A 256 Meg dynamic random access memory is comprised of a plurality of cells organized into individual arrays, with the arrays being organized into 32 Meg array blocks, which are organized into 64 Meg quadrants. Sense amplifiers are positioned between adjacent rows in the individual arrays while row decoders are positioned between adjacent columns in the individual arrays. In certain of the gap cells, multiplexers are provided to transfer signals from I/O lines to data lines. A datapath is provided which, in addition to the foregoing, includes array I/O blocks, responsive to the datalines from each quadrant to output data to a data read mux, data buffers, and data driver pads. The write data path includes a data in buffer and data write muxes for providing data to the array I/O blocks. A power bus is provided which minimizes routing of externally supplied voltages, completely rings each of the array blocks, and provides gridded power distribution within each of the array blocks.
    Type: Application
    Filed: July 6, 2001
    Publication date: January 24, 2002
    Inventors: Brent Keeth, Layne G. Bunker, Raymond J. Beffa, Frank F. Ross
  • Patent number: 6324088
    Abstract: A 256 Meg dynamic random access memory is comprised of a plurality of cells organized into individual arrays, with the arrays being organized into 32 Meg array blocks, which are organized into 64 Meg quadrants. Sense amplifiers are positioned between adjacent rows in the individual arrays while row decoders are positioned between adjacent columns in the individual arrays. In certain of the gap cells, multiplexers are provided to transfer signals from I/O lines to data lines. A datapath is provided which, in addition to the foregoing, includes array I/O blocks, responsive to the datalines from each quadrant to output data to a data read mux, data buffers, and data driver pads. The write data path includes a data in buffer and data write muxes for providing data to the array I/O blocks. A power bus is provided which minimizes routing of externally supplied voltages, completely rings each of the array blocks, and provides gridded power distribution within each of the array blocks.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: November 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Brent Keeth, Layne G. Bunker, Raymond J. Beffa, Frank F. Ross
  • Patent number: 6314011
    Abstract: A 256 Meg dynamic random access memory is comprised of a plurality of cells organized into individual arrays, with the arrays being organized into 32 Meg array blocks, which are organized into 64 Meg quadrants. Sense amplifiers are positioned between adjacent rows in the individual arrays while row decoders are positioned between adjacent columns in the individual arrays. In certain of the gap cells, multiplexers are provided to transfer signals from I/O lines to data lines. A datapath is provided which, in addition to the foregoing, includes array I/O blocks, responsive to the datalines from each quadrant to output data to a data read mux, data buffers, and data driver pads. The write data path includes a data in buffer and data write muxes for providing data to the array I/O blocks. A power bus is provided which minimizes routing of externally supplied voltages, completely rings each of the array blocks, and provides gridded power distribution within each of the array blocks.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: November 6, 2001
    Inventors: Brent Keeth, Layne G. Bunker, Ronald L. Taylor, John S. Mullin, Raymond J. Beffa, Frank F. Ross, Larry D. Kinsman
  • Patent number: 6313658
    Abstract: A circuit for isolating a short-circuited integrated circuit (IC) formed on the surface of a semiconductor wafer from other ICs formed on the wafer that are interconnected with the short-circuited IC includes control circuitry within the short-circuited IC for sensing the short circuit. The control circuitry may sense the short circuit in a variety of ways, including sensing excessive current drawn by the short-circuited IC, and sensing an abnormally low or high voltage within the short-circuited IC. Switching circuitry also within the short-circuited IC selectively isolates the short-circuited IC from the other ICs on the wafer in response to the control circuitry sensing the short circuit. As a result, if the wafer is under probe test, for example, testing can continue uninterrupted on the other ICs while the short-circuited IC is isolated.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: November 6, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, William K. Waller, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Patent number: 6307171
    Abstract: An inventive method for sorting integrated circuit (IC) devices of the type having a substantially unique identification (ID) code, such as a fuse ID, includes automatically reading the ID code of each of the IC devices and sorting the IC devices in accordance with their automatically read ID codes. The inventive method can be used in conjunction with an IC manufacturing process that includes providing semiconductor wafers, fabricating the IC's on each of the wafers, causing each of the IC's to store its ID code, separating each of the IC's from its wafer to form IC dice, assembling the IC dice into IC devices, and testing the IC devices.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: October 23, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Patent number: 6292009
    Abstract: A semiconductor wafer having dice that include circuitry that is placed into a mode when the circuitry receives an alternating signal having certain characteristics. The alternating signal may be supplied from a system controller through a probe, probe pad, and conductive path on the wafer. In a preferred embodiment, the conductive path simultaneously carries a VCC power signal and the alternating signal to the circuitry. However, the alternating signal may be carried on a conductive path different from the one carrying the VCC signal. A great deal of information may be conveyed through the alternating signal, making other signals unnecessary in controlling, testing, stressing, and repairing dice on the wafer. For example, clocking information may be conveyed through the alternating signal. The circuitry may be placed in different modes in response to different characteristics of the alternating signal. The alternating signal and a VCC power signal are received through a single contact on each die.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: September 18, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Publication number: 20010007092
    Abstract: An inventive method of manufacturing IC devices from semiconductor wafers includes providing the wafers and fabricating IC's on the wafers. At probe, a unique fuse ID is stored in each IC, and an electronic wafer map is electronically stored for each wafer indicating the locations of good and bad IC's on the wafer and the fuse ID's of the IC's on the wafer. Each IC is then separated from its wafer to form an IC die, and the IC dice are assembled into IC devices. At the opens/shorts test at the end of assembly, the fuse ID of each IC in each device is automatically retrieved so the wafer map of the IC device may be accessed and evaluated to identify any IC devices containing bad IC's that have accidentally been assembled into IC devices. These “bad” IC devices are discarded, and the remaining IC devices continue on to back-end testing.
    Type: Application
    Filed: February 27, 2001
    Publication date: July 5, 2001
    Inventor: Raymond J. Beffa
  • Patent number: 6208947
    Abstract: An inventive method of manufacturing IC devices from semiconductor wafers includes providing the wafers and fabricating IC's on the wafers. At probe, a unique fuse ID is stored in each IC, and an electronic wafer map is electronically stored for each wafer indicating the locations of good and bad IC's on the wafer and the fuse ID's of the IC's on the wafer. Each IC is then separated from its wafer to form an IC die, and the IC dice are assembled into IC devices. At the opens/shorts test at the end of assembly, the fuse ID of each IC in each device is automatically retrieved so the wafer map of the IC device may be accessed and evaluated to identify any IC devices containing bad IC's that have accidentally been assembled into IC devices. These “bad” IC devices are discarded, and the remaining IC devices continue on to back-end testing.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: March 27, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Patent number: 6147316
    Abstract: An inventive method for sorting integrated circuit (IC) devices of the type having a substantially unique identification (ID) code, such as a fuse ID, includes automatically reading the ID code of each of the IC devices, and sorting the IC devices in accordance with their automatically read ID codes. The inventive method can be used in conjunction with an IC manufacturing process that includes providing semiconductor wafers, fabricating the IC's on each of the wafers, causing each of the IC's to store its ID code, separating each of the IC's from its wafer to form IC dice, assembling the IC dice into IC devices, and testing the IC devices.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: November 14, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Patent number: 6122563
    Abstract: A method for sorting integrated circuit (IC) devices of the type having a fuse identification (ID) into those devices requiring enhanced reliability testing and those requiring standard testing includes storing fabrication deviation data, probe data, and test data in association with the fuse ID of each of the devices indicating each of the devices requires either enhanced reliability testing or standard testing. The fuse ID of each of the devices is then automatically read before, during, or after standard testing of the devices. The testing process requirement data stored in association with the fuse ID of each of the devices is then accessed, and the devices are sorted in accordance with the accessed data into those devices requiring enhanced reliability testing and those requiring standard testing. The method thus directs those devices needing enhanced reliability testing to such testing without the need for all devices from the same wafer or wafer lot to proceed through special testing.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: September 19, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Patent number: 6118138
    Abstract: A semiconductor wafer having dice that include circuitry that is placed into a mode when the circuitry receives an alternating signal having certain characteristics. The alternating signal may be supplied from a system controller through a probe, probe pad, and conductive path on the wafer. In a preferred embodiment, the conductive path simultaneously carries a VCC power signal and the alternating signal to the circuitry. However, the alternating signal may be carried on a conductive path different from the one carrying the VCC signal. A great deal of information may be conveyed through the alternating signal, making other signal unnecessary in controlling, testing, stressing, and repairing dice on the wafer. For example, clocking information may be conveyed through the alternating signal. The circuitry may be placed in different modes in response to different characteristics of the alternating signal. The alternating signal and a VCC power signal are received through a single contact on each die.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: September 12, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Patent number: 6100486
    Abstract: An inventive method for sorting integrated circuit (IC) devices of the type having a substantially unique identification (ID) code, such as a fuse ID, includes automatically reading the ID code of each of the IC devices, and sorting the IC devices in accordance with their automatically read ID codes. The inventive method can be used in conjunction with an IC manufacturing process that includes providing semiconductor wafers, fabricating the IC's on each of the wafers, causing each of the IC's to store its ID code, separating each of the IC's from its wafer to form IC dice, assembling the IC dice into IC devices, and testing the IC devices.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: August 8, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Patent number: 6067507
    Abstract: An inventive method of manufacturing IC devices from semiconductor wafers includes providing the wafers and fabricating IC's on the wafers. At probe, a unique fuse ID is stored in each IC, and an electronic wafer map is electronically stored for each wafer indicating the locations of good and bad IC's on the wafer and the fuse ID's of the IC's on the wafer. Each IC is then separated from its wafer to form an IC die, and the IC dice are assembled into IC devices. At the opens/shorts test at the end of assembly, the fuse ID of each IC in each device is automatically retrieved so the wafer map of the IC device may be accessed and evaluated to identify any IC devices containing bad IC's that have accidentally been assembled into IC devices. These "bad" IC devices are discarded, and the remaining IC devices continue on to back-end testing.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: May 23, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa
  • Patent number: 5994915
    Abstract: A semiconductor wafer having dice that include circuitry that is placed into a mode when the circuitry receives an alternating signal having certain characteristics. The alternating signal may be supplied from a system controller through a probe, probe pad, and conductive path on the wafer. In a preferred embodiment, the conductive path simultaneously carries a VCC power signal and the alternating signal to the circuitry. However, the alternating signal may be carried on a conductive path different from the one carrying the VCC signal. A great deal of information may be conveyed through the alternating signal, making other signals unnecessary in controlling, testing, stressing, and repairing dice on the wafer. For example, clocking information may be conveyed through the alternating signal. The circuitry may be placed in different modes in response to different characteristics of the alternating signal. The alternating signal and a VCC power signal are received through a single contact on each die.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: November 30, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Patent number: 5976899
    Abstract: A semiconductor wafer having dice that include circuitry that is placed into a mode when the circuitry receives an alternating signal having certain characteristics. The alternating signal may be supplied from a system controller through a probe, probe pad, and conductive path on the wafer. In a preferred embodiment, the conductive path simultaneously carries a VCC power signal and the alternating signal to the circuitry. However, the alternating signal may be carried on a conductive path different from the one carrying the VCC signal. A great deal of information may be conveyed through the alternating signal, making other signals unnecessary in controlling, testing, stressing, and repairing dice on the wafer. For example, clocking information may be conveyed through the alternating signal. The circuitry may be placed in different modes in response to different characteristics of the alternating signal. The alternating signal and a VCC power signal are received through a single contact on each die.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: November 2, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Leland R. Nevill, Raymond J. Beffa, Eugene H. Cloud
  • Patent number: 5927512
    Abstract: An inventive method for sorting integrated circuit (IC) devices of the type having a substantially unique identification (ID) code, such as a fuse ID, includes automatically reading the ID code of each of the IC devices, and sorting the IC devices in accordance with their automatically read ID codes. The inventive method can be used in conjunction with an IC manufacturing process that includes providing semiconductor wafers, fabricating the IC's on each of the wafers, causing each of the IC's to store its ID code, separating each of the IC's from its wafer to form IC dice, assembling the IC dice into IC devices, and testing the IC devices.
    Type: Grant
    Filed: January 17, 1997
    Date of Patent: July 27, 1999
    Assignee: Micron Technology, Inc.
    Inventor: Raymond J. Beffa