Patents by Inventor Reza A. Pagaila

Reza A. Pagaila has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150145128
    Abstract: A semiconductor device comprises a first semiconductor die. An encapsulant is disposed around the first semiconductor die. A first stepped interconnect structure is disposed over a first surface of the encapsulant. An opening is formed in the first stepped interconnect structure. The opening in the first stepped interconnect structure is over the first semiconductor die. A second semiconductor die is disposed in the opening of the first stepped interconnect structure. A second stepped interconnect structure is disposed over the first stepped interconnect structure. A conductive pillar is formed through the encapsulant.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Publication number: 20150137322
    Abstract: A semiconductor wafer contains semiconductor die separated by saw streets. The semiconductor wafer is singulated through a portion of the saw streets to form wafer sections each having multiple semiconductor die per wafer section attached by uncut saw streets. Each wafer section has at least two semiconductor die. The wafer sections are mounted over a temporary carrier in a grid pattern to reserve an interconnect area between the wafer sections. An encapsulant is deposited over the wafer sections and interconnect area. A conductive pillar can be formed in the encapsulant over the interconnect area. An interconnect structure is formed over the wafer sections and encapsulant in the interconnect area. The wafer sections and interconnect area are singulated to separate the semiconductor die each with a portion of the interconnect area. A heat sink or shielding layer can be formed over the wafer sections.
    Type: Application
    Filed: December 10, 2014
    Publication date: May 21, 2015
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin
  • Publication number: 20150115394
    Abstract: A semiconductor device has a first semiconductor die with a shielding layer formed over its back surface. The first semiconductor die is mounted to a carrier. A first insulating layer is formed over the shielding layer. A second semiconductor die is mounted over the first semiconductor die separated by the shielding layer and first insulating layer. A second insulating layer is deposited over the first and second semiconductor die. A first interconnect structure is formed over the second semiconductor die and second insulating layer. A second interconnect structure is formed over the first semiconductor die and second insulating layer. The shielding layer is electrically connected to a low-impedance ground point through a bond wire, RDL, or TSV. The second semiconductor die may also have a shielding layer formed on its back surface. The semiconductor die are bonded through the metal-to-metal shielding layers.
    Type: Application
    Filed: November 25, 2014
    Publication date: April 30, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Reza A. Pagaila, Byung Tai Do, Nathapong Suthiwongsunthorn
  • Patent number: 9006882
    Abstract: A semiconductor die has an insulating material disposed in a peripheral region around the die. A blind via is formed through the gap. A conductive material is deposited in the blind via to form a conductive via. A conductive layer is formed between the conductive via and contact pad on the semiconductor die. A protective layer is formed over the front side of the semiconductor die. A portion of the insulating material and conductive via is removed from a backside of the semiconductor die opposite the front side of the semiconductor die so that a thickness of the conductive via is less than a thickness of the semiconductor wafer. The insulating material and conductive via are tapered. The wafer is singulated through the gap to separate the semiconductor die. A plurality of semiconductor die can be stacked and electrically interconnected through the conductive vias.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 14, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Heap Hoe Kuan
  • Patent number: 8999760
    Abstract: A semiconductor device has a thermally conductive layer with a plurality of openings formed over a temporary carrier. The thermally conductive layer includes electrically non-conductive material. A semiconductor die has a plurality of bumps formed over contact pads on the die. The semiconductor die is mounted over the thermally conductive layer so that the bumps are disposed at least partially within the openings in the thermally conductive layer. An encapsulant is deposited over the die and thermally conductive layer. The temporary carrier is removed to expose the bumps. A first interconnect structure is formed over the encapsulant, semiconductor die, and bumps. The bumps are electrically connected to the first interconnect structure. A heat sink or shielding layer can be formed over the semiconductor die. A second interconnect structure can be formed over the encapsulant and electrically connected to the first interconnect structure through conductive vias formed in the encapsulant.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 7, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Patent number: 8994184
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias and conductive layer formed over the substrate. A semiconductor die is mounted over a carrier. The substrate is mounted to the semiconductor die opposite the carrier. An encapsulant is deposited between the substrate and carrier around the semiconductor die. A plurality of conductive TMVs is formed through the substrate and encapsulant. The conductive TMVs protrude from the encapsulant to aid with alignment of the interconnect structure. The conductive TMVs are electrically connected to the conductive layer and conductive vias. The carrier is removed and an interconnect structure is formed over a surface of the encapsulant and semiconductor die opposite the substrate. The interconnect structure is electrically connected to the conductive TMVs. A plurality of semiconductor devices can be stacked and electrically connected through the substrate, conductive TMVs, and interconnect structure.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 8946870
    Abstract: A semiconductor die has a first semiconductor die mounted to a carrier. A plurality of conductive pillars is formed over the carrier around the first die. An encapsulant is deposited over the first die and conductive pillars. A first stepped interconnect layer is formed over a first surface of the encapsulant and first die. The first stepped interconnect layer has a first opening. A second stepped interconnect layer is formed over the first stepped interconnect layer. The second stepped interconnect layer has a second opening. The carrier is removed. A build-up interconnect structure is formed over a second surface of the encapsulant and first die. A second semiconductor die over the first semiconductor die and partially within the first opening. A third semiconductor die is mounted over the second die and partially within the second opening. A fourth semiconductor die is mounted over the second stepped interconnect layer.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: February 3, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Patent number: 8940636
    Abstract: A semiconductor package includes a semiconductor wafer having a plurality of semiconductor die. A contact pad is formed over and electrically connected to an active surface of the semiconductor die. A gap is formed between the semiconductor die. An insulating material is deposited in the gap between the semiconductor die. An adhesive layer is formed over a surface of the semiconductor die and the insulating material. A via is formed in the insulating material and the adhesive layer. A conductive material is deposited in the via to form a through hole via (THV). A conductive layer is formed over the contact pad and the THV to electrically connect the contact pad and the THV. The plurality of semiconductor die is singulated. The insulating material can include an organic material. The active surface of the semiconductor die can include an optical device.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: January 27, 2015
    Assignee: STATS ChipPAC, Ltc.
    Inventors: Reza A. Pagaila, Zigmund R. Camacho, Lionel Chien Hui Tay, Byung Tai Do
  • Patent number: 8916452
    Abstract: A semiconductor wafer contains semiconductor die separated by saw streets. The semiconductor wafer is singulated through a portion of the saw streets to form wafer sections each having multiple semiconductor die per wafer section attached by uncut saw streets. Each wafer section has at least two semiconductor die. The wafer sections are mounted over a temporary carrier in a grid pattern to reserve an interconnect area between the wafer sections. An encapsulant is deposited over the wafer sections and interconnect area. A conductive pillar can be formed in the encapsulant over the interconnect area. An interconnect structure is formed over the wafer sections and encapsulant in the interconnect area. The wafer sections and interconnect area are singulated to separate the semiconductor die each with a portion of the interconnect area. A heat sink or shielding layer can be formed over the wafer sections.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: December 23, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin
  • Patent number: 8907498
    Abstract: A semiconductor device has a first semiconductor die with a shielding layer formed over its back surface. The first semiconductor die is mounted to a carrier. A first insulating layer is formed over the shielding layer. A second semiconductor die is mounted over the first semiconductor die separated by the shielding layer and first insulating layer. A second insulating layer is deposited over the first and second semiconductor die. A first interconnect structure is formed over the second semiconductor die and second insulating layer. A second interconnect structure is formed over the first semiconductor die and second insulating layer. The shielding layer is electrically connected to a low-impedance ground point through a bond wire, RDL, or TSV. The second semiconductor die may also have a shielding layer formed on its back surface. The semiconductor die are bonded through the metal-to-metal shielding layers.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 9, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Nathapong Suthiwongsunthorn
  • Publication number: 20140353846
    Abstract: A semiconductor device has conductive pillars formed over a carrier. A first semiconductor die is mounted over the carrier between the conductive pillars. An encapsulant is deposited over the first semiconductor die and carrier and around the conductive pillars. A recess is formed in a first surface of the encapsulant over the first semiconductor die. The recess has sloped or stepped sides. A first interconnect structure is formed over the first surface of the encapsulant. The first interconnect structure follows a contour of the recess in the encapsulant. The carrier is removed. A second interconnect structure is formed over a second surface of the encapsulant and first semiconductor die. The first and second interconnect structures are electrically connected to the conductive pillars. A second semiconductor die is mounted in the recess. A third semiconductor die is mounted over the recess and second semiconductor die.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 4, 2014
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Linda Pei Ee Chua, Byung Tai Do, Reza A. Pagaila
  • Patent number: 8896109
    Abstract: A semiconductor device has a first semiconductor die mounted over a carrier. Wettable contact pads can be formed over the carrier. A second semiconductor die is mounted over the first semiconductor die. The second die is laterally offset with respect to the first die. An electrical interconnect is formed between an overlapping portion of the first die and second die. A plurality of first conductive pillars is disposed over the first die. A plurality of second conductive pillars is disposed over the second die. An encapsulant is deposited over the first and second die and first and second conductive pillars. A first interconnect structure is formed over the encapsulant, first conductive pillars, and second die. The carrier is removed. A second interconnect structure is formed over the encapsulant, second conductive pillars, and first die. A third conductive pillar is formed between the first and second build-up interconnect structures.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: November 25, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Seng Guan Chow, Seung Uk Yoon
  • Publication number: 20140332986
    Abstract: A semiconductor device is made by providing a temporary carrier and providing a semiconductor die having a plurality of bumps formed on its active surface. An adhesive material is deposited as a plurality of islands or bumps on the carrier or active surface of the semiconductor die. The adhesive layer can also be deposited as a continuous layer over the carrier or active surface of the die. The semiconductor die is mounted to the carrier. An encapsulant is deposited over the die and carrier. The adhesive material holds the semiconductor die in place to the carrier while depositing the encapsulant. An interconnect structure is formed over the active surface of the die. The interconnect structure is electrically connected to the bumps of the semiconductor die. The adhesive material can be removed prior to forming the interconnect structure, or the interconnect structure can be formed over the adhesive material.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Reza A. Pagaila, Yaojian Lin
  • Patent number: 8883559
    Abstract: A semiconductor device is made by providing a temporary carrier and providing a semiconductor die having a plurality of bumps formed on its active surface. An adhesive material is deposited as a plurality of islands or bumps on the carrier or active surface of the semiconductor die. The adhesive layer can also be deposited as a continuous layer over the carrier or active surface of the die. The semiconductor die is mounted to the carrier. An encapsulant is deposited over the die and carrier. The adhesive material holds the semiconductor die in place to the carrier while depositing the encapsulant. An interconnect structure is formed over the active surface of the die. The interconnect structure is electrically connected to the bumps of the semiconductor die. The adhesive material can be removed prior to forming the interconnect structure, or the interconnect structure can be formed over the adhesive material.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: November 11, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin
  • Publication number: 20140327145
    Abstract: A semiconductor device has a first semiconductor die mounted over a carrier. An interposer frame has an opening in the interposer frame and a plurality of conductive pillars formed over the interposer frame. The interposer is mounted over the carrier and first die with the conductive pillars disposed around the die. A cavity can be formed in the interposer frame to contain a portion of the first die. An encapsulant is deposited through the opening in the interposer frame over the carrier and first die. Alternatively, the encapsulant is deposited over the carrier and first die and the interposer frame is pressed against the encapsulant. Excess encapsulant exits through the opening in the interposer frame. The carrier is removed. An interconnect structure is formed over the encapsulant and first die. A second semiconductor die can be mounted over the first die or over the interposer frame.
    Type: Application
    Filed: December 14, 2012
    Publication date: November 6, 2014
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Reza A. Pagaila, Seng Guan Chow, Seung Uk Yoon
  • Publication number: 20140319661
    Abstract: A semiconductor device has a plurality of conductive vias formed partially through a substrate. A conductive layer is formed over the substrate and electrically connected to the conductive vias. A semiconductor die is mounted over the substrate. An encapsulant is deposited over the semiconductor die and substrate. A trench is formed through the encapsulant around the semiconductor die. A shielding layer is formed over the encapsulant. The trench is formed partially through the substrate and the shielding layer is formed in the trench partially through the substrate. An insulating layer can be formed in the trench prior to forming the shielding layer. A portion of the substrate is removed to expose the conductive vias. An interconnect structure is formed over the substrate opposite the semiconductor die. The interconnect structure is electrically connected to the conductive vias. The shielding layer is electrically connected to the interconnect structure.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventor: Reza A. Pagaila
  • Publication number: 20140319678
    Abstract: A semiconductor device has a semiconductor die mounted over a carrier. An encapsulant is deposited over the semiconductor die and carrier. An insulating layer is formed over the semiconductor die and encapsulant. A plurality of first vias is formed through the insulating layer and semiconductor die while mounted to the carrier. A plurality of second vias is formed through the insulating layer and encapsulant in the same direction as the first vias while the semiconductor die is mounted to the carrier. An electrically conductive material is deposited in the first vias to form conductive TSV and in the second vias to form conductive TMV. A first interconnect structure is formed over the insulating layer and electrically connected to the TSV and TMV. The carrier is removed. A second interconnect structure is formed over the semiconductor die and encapsulant and electrically connected to the TSV and TMV.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Reza A. Pagaila, Yaojian Lin, Seung Wook Yoon
  • Patent number: 8866294
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over a surface of the first semiconductor die. A penetrable adhesive layer is formed over a temporary carrier. The adhesive layer can include a plurality of slots. The semiconductor die is mounted to the carrier by embedding the bumps into the penetrable adhesive layer. The semiconductor die and interconnect structure can be separated by a gap. An encapsulant is deposited over the first semiconductor die. The bumps embedded into the penetrable adhesive layer reduce shifting of the first semiconductor die while depositing the encapsulant. The carrier is removed. An interconnect structure is formed over the semiconductor die. The interconnect structure is electrically connected to the bumps. A thermally conductive bump is formed over the semiconductor die, and a heat sink is mounted to the interconnect structure and thermally connected to the thermally conductive bump.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 21, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Publication number: 20140291820
    Abstract: A semiconductor wafer contains a plurality of semiconductor die separated by a non-active area of the semiconductor wafer. A plurality of contact pads is formed on an active surface of the semiconductor die. A first insulating layer is formed over the semiconductor wafer. A portion of the first insulating layer is removed to expose the contact pads on the semiconductor die. An opening is formed partially through the semiconductor wafer in the active surface of the semiconductor die or in the non-active area of the semiconductor wafer. A second insulating layer is formed in the opening in the semiconductor wafer. A shielding layer is formed over the active surface. The shielding layer extends into the opening of the semiconductor wafer to form a conductive via. A portion of a back surface of the semiconductor wafer is removed to singulate the semiconductor die.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventor: Reza A. Pagaila
  • Publication number: 20140264786
    Abstract: A semiconductor device has a first semiconductor die with a sloped side surface. The first semiconductor die is mounted to a temporary carrier. An RDL extends from a back surface of the first semiconductor die along the sloped side surface of the first semiconductor die to the carrier. An encapsulant is deposited over the carrier and a portion of the RDL along the sloped side surface. The back surface of the first semiconductor die and a portion of the RDL is devoid of the encapsulant. The temporary carrier is removed. An interconnect structure is formed over the encapsulant and exposed active surface of the first semiconductor die. The RDL is electrically connected to the interconnect structure. A second semiconductor die is mounted over the back surface of the first semiconductor die. The second semiconductor die has bumps electrically connected to the RDL.
    Type: Application
    Filed: June 1, 2014
    Publication date: September 18, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo