Patents by Inventor Ricardo Ehrenpfordt

Ricardo Ehrenpfordt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220161018
    Abstract: Disclosed is a mechanical circulatory support system for transcatheter delivery to the heart, having a removable guidewire aid to assist with inserting the guidewire along a path that avoids a rotating impeller. The system may comprise a catheter shaft and a circulatory support device carried by the shaft. The device may comprise a tubular housing, an impeller and the guidewire aid. The guidewire aid may include a removable guidewire guide tube. The guide tube may enter a first guidewire port of the tubular housing, exit the tubular housing via a second guidewire port on a side wall of the tubular housing on a distal side of the impeller, enter a third guidewire port on a proximal side of the impeller, and extend proximally through the catheter shaft.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin
  • Publication number: 20220161021
    Abstract: A minimally invasive miniaturized percutaneous mechanical circulatory support system for transcatheter delivery of a pump to the heart that actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. The pump may include a tubular housing, a motor, an impeller configured to be rotated by the motor. The impeller may be rotated by the motor, via a shaft with an annular polymeric seal around the shaft, or via a magnetic drive. The system may have an insertion tool having a tubular body and configured to axially movably receive the circulatory support device, and an introducer sheath configured to axially movably receive the insertion tool.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, niko Baeuerle, Peter Wassermann, Fabian Eiberger, Kenneth M. Martin, Thomas Friedrich, Mario Heintze
  • Publication number: 20220161019
    Abstract: Disclosed is a minimally invasive miniaturized percutaneous mechanical circulatory support system. The system may be placed across the aortic valve via a single femoral arterial access point. The system includes a low profile axial rotary blood pump carried by the distal end of a catheter. The system can be percutaneously inserted through the femoral artery and positioned across the aortic valve into the left ventricle. The device actively unloads the left ventricle by pumping blood from the left ventricle into the ascending aorta and systemic circulation. A magnetic drive and encased motor housing allows for purgeless operation for extended periods of time to treat various ailments, for example more than six hours as acute therapy for cardiogenic shock.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Marvin Mitze, Hans Christof, Vladimir Popov, Martin Schwarz, Leon Wenning, Johannes Bette, Attila Fabiunke, Sina Gerlach, Johannes Stigloher, Julian Görries, Jan Schöfer, Valentin Rex, Johannes Berner, Bernhard Ehni, Johannes Ferch, Hans-Baldung Luley, Tom Döhring, Jens Burghaus, Inga Schellenberg, Hardy Baumbach, Annika Bach, Ingo Stotz, Julian Kassel, Armin Schuelke, Stefan Henneck, David Minzenmay, Thomas Alexander Schlebusch, Tobias Schmid, Tjalf Pirk, Martina Budde, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Niko Baeuerle, Ralf Strasswiemer, Uwe Vollmer, Manuel Gaertner, Fabian Eiberger, Tobias Baechle, Karin Schneider, Peter Wassermann
  • Publication number: 20210379352
    Abstract: A cardiac support system (20) is equipped with a retaining structure (30) for the cardiac support system, said retaining structure (30) being intended to fix the cardiac support system in place. The cardiac support system comprises a device for monitoring the integrity of the retaining structure (30).
    Type: Application
    Filed: July 9, 2019
    Publication date: December 9, 2021
    Inventors: Thomas Alexander Schlebusch, Ricardo Ehrenpfordt, Ahmad Mansour
  • Publication number: 20210355977
    Abstract: An anchoring device, in particular to a bolt anchor or an expansion anchor, includes a communication interface via which at least one item of information can be made available to an external device. It is proposed that the communication interface have at least one surface wave unit for generating an acoustic surface wave.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 18, 2021
    Inventors: Miriam Kederer, Uwe Wostradowski, Tjalf Pirk, Fabian Purkl, Ricardo Ehrenpfordt, Wolfgang Pleuger, Michael Curcic
  • Publication number: 20210346678
    Abstract: The invention relates to a method for detecting a state of wear of a cardiac support system. The method comprises a read-in step and a determination step. During the read-in step, a sensor signal (315) representing an operating state of the cardiac support system is read in. During the determination step, a wear signal (325) is determined using the sensor signal (315) and a comparison rule (320). The wear signal (325) represents the wear condition.
    Type: Application
    Filed: June 21, 2019
    Publication date: November 11, 2021
    Inventors: Hardy Baumbach, Julian Kassel, Inga Schellenberg, Ricardo Ehrenpfordt, Marc Schmid, Ahmad Mansour, Martina Budde, Thomas Alexander Schlebusch
  • Publication number: 20210318161
    Abstract: A sensor apparatus having a housing and having an at least single-axis vibration sensor. The housing has wall elements that are disposed in such a way that the wall elements together surround the vibration sensor. The housing has a stiffening structure that connects the wall elements rigidly to one another. The vibration sensor is coupled mechanically solidly to the stiffening structure. The housing has a first through hole along a first axis and a second through hole along a second axis. The first axis and the second axis are substantially perpendicular to one another.
    Type: Application
    Filed: August 20, 2019
    Publication date: October 14, 2021
    Inventors: Ricardo Ehrenpfordt, Magnus Christian Proebster, Max Schellenberg
  • Patent number: 10775407
    Abstract: A sensor system includes a sensor device and a cover device. The sensor device includes an external surface on which at least one electrical test contact is arranged. The cover device includes at least partially an electrically insulating material and is mechanically connected to the sensor device. The cover device is configured to cover the at least one electrical test contact of the sensor device so as to prevent contact from being made to the at least one electrical test contact from outside the sensor system.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 15, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Frederik Ante
  • Publication number: 20190301974
    Abstract: According to the disclosure, a sensor assembly, in particular for a guide, is provided, which has a sensor and an analysis device. The analysis device determines a movement profile of the guide component based on a vibration signal detected by the sensor, wherein a part of the movement profile is used for the fatigue detection. Alternatively or additionally, it can be provided that the vibration signal detected by the sensor is filtered or digitally filtered and the or a movement profile of the guide component is determined based on the filtered or digitally filtered signal.
    Type: Application
    Filed: March 21, 2019
    Publication date: October 3, 2019
    Inventors: Ahmad Mansour, Lukas Lamprecht, Max Schellenberg, Ricardo Ehrenpfordt
  • Patent number: 10051355
    Abstract: Measures are described by which the back volume of a microphone component can be realized regardless of its packaging. Within the framework of a microphone module, a circuit board is used for the 2nd-level mounting of at least one microphone component part, in whose surface at least one connection opening is formed, which terminates in a cavity in the layer structure of the circuit board. In addition, the circuit board surface having the connection opening is configured for a sealing mounting of the microphone component part above the connection opening, so that the microphone component is acoustically connected to the cavity in the circuit board via the connection opening in the circuit board surface, and this cavity functions as backside volume for the microphone component part.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: August 14, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Christoph Schelling
  • Patent number: 10035696
    Abstract: Measures are provided, by which mechanical stresses within the diaphragm structure of a MEMS component may be intentionally dissipated, and which additionally enable the implementation of diaphragm elements having a large diaphragm area in comparison to the chip area. The diaphragm element is formed in the layer structure of the MEMS component. It spans an opening in the layer structure and is attached via a spring structure to the layer structure. The spring structure includes at least one first spring component, which is oriented essentially in parallel to the diaphragm element and is formed in a layer plane below the diaphragm element. Furthermore, the spring structure includes at least one second spring component, which is oriented essentially perpendicularly to the diaphragm element. The spring structure is designed in such a way that the area of the diaphragm element is greater than the area of the opening which it spans.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: July 31, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Fabian Purkl, Michael Stumber, Ricardo Ehrenpfordt, Rolf Scheben, Benedikt Stein, Christoph Schelling
  • Publication number: 20180123014
    Abstract: A thermoelectric device includes a printed circuit board, a component which is arranged on the printed circuit board, a cover which covers the printed circuit board, a thermoelectric generator, and a spring unit. The thermoelectric generator is thermally connected to the printed circuit board or metal paths on the printed circuit board and to the cover in order to generate an electric supply voltage for the component from the temperature difference between the printed circuit board and the cover. The spring unit elastically holds the thermoelectric generator between the printed circuit board and the cover.
    Type: Application
    Filed: April 22, 2016
    Publication date: May 3, 2018
    Inventors: Tobias Zoller, Ricardo Ehrenpfordt, Holger Rank, Frederik Ante
  • Patent number: 9936298
    Abstract: For a MEMS component, in the layer structure of which at least one sound-pressure-sensitive diaphragm element is formed, which spans an opening or cavity in the layer structure and the deflections of which are detected with the aid of at least one piezosensitive circuit element in the attachment area of the diaphragm element, design measures are provided, by which the stress distribution over the diaphragm surface may be influenced intentionally in the event of deflection of the diaphragm element. In particular, measures are provided, by which the mechanical stresses are intentionally introduced into predefined areas of the diaphragm element, to thus amplify the measuring signal. For this purpose, the diaphragm element includes at least one designated bending area, which is defined by the structuring of the diaphragm element and is more strongly deformed in the event of sound action than the adjoining diaphragm sections.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: April 3, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Thomas Buck, Fabian Purkl, Michael Stumber, Ricardo Ehrenpfordt, Rolf Scheben, Benedikt Stein, Christoph Schelling
  • Patent number: 9933286
    Abstract: A sensor comprises a sensor element configured to provide a sensor signal representing at least one measurand detected by the sensor element, an electrical circuit configured to process the sensor signal to form a data signal, a photovoltaic cell configured to provide electrical energy for the sensor element and the electrical circuit, and a housing, in which the sensor element, the electrical circuit and the photovoltaic cell are positioned, the housing including a recess in which the photovoltaic cell is positioned, and a rim surrounding the recess and protruding beyond the photovoltaic cell. A method is also provided.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: April 3, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Frederik Ante, Johannes Kenntner
  • Publication number: 20180090659
    Abstract: A method for producing a thermoelectric generator includes a preparation step, a connection step and an insertion step. In the preparation step, a first substrate, a thermoelectric generator material and a second substrate are prepared. In the connection step, the generator material is connected to the first substrate and the second substrate. In this way, a first side of the generator material is connected to the first substrate in a thermally and electrically conductive manner. A second side of the generator material, opposite the first side, is connected to the second substrate in a thermally and electrically conductive manner. In the insertion step, a support material is inserted between the first substrate and the second substrate, in order to support the first substrate and the second substrate against each other and/or to mechanically connect them together.
    Type: Application
    Filed: March 11, 2016
    Publication date: March 29, 2018
    Inventors: Tobias Zoller, Ricardo Ehrenpfordt, Frederik Ante, Johannes Kenntner
  • Patent number: 9917213
    Abstract: A photovoltaic module has at least one solar cell having an irradiation surface for receiving light. The photovoltaic module is configured to provide a voltage. The photovoltaic module also includes a carrier unit which is arranged laterally offset from the solar cell at least on one side. A first surface of the carrier unit is oriented flush with the irradiation surface of the solar cell within a predefined tolerance range. The photovoltaic module also includes at least one electrical conductor, which contacts a carrier contact connection on a second surface of the carrier unit opposite the first surface via a cell contact connection of an electronic component on the solar cell or the solar cell in an electrically conductive manner. The cell contact connection is arranged on a contacting side of the solar cell opposite the irradiation surface.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 13, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Frederik Ante, Johannes Kenntner
  • Publication number: 20170198687
    Abstract: A pump apparatus for gaseous media. A film is provided on a substrate and is connected to the substrate in the edge region of the film. By interaction between a magnetic device on the substrate and a magnetic device on the film, the film can be raised or lowered on the substrate. A pumping motion is thereby produced.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 13, 2017
    Inventors: Dick Scholten, Ricardo Ehrenpfordt, Tjalf Pirk
  • Publication number: 20170113926
    Abstract: A flip-chip manufactured MEMS device. The device includes a substrate and a MEMS die. The substrate has a plurality of bumps, a plurality of connection points configured to electrically connect the MEMS device to another device, and a plurality of vias electrically connecting the bumps to the connections points. The MEMS die is attached to the substrate using flip-chip manufacturing techniques, but the MEMS die is not subjected to processing normally associated with creating bumps for flip-chip manufacturing.
    Type: Application
    Filed: November 1, 2016
    Publication date: April 27, 2017
    Inventors: Eric Ochs, Jay S. Salmon, Ricardo Ehrenpfordt
  • Publication number: 20170082466
    Abstract: An electronic module includes at least one support plate and at least one electronic component. The at least one support plate defines at least one through opening and has a contact side that includes at least one contact element. The at least one electronic module includes at least one electronic component positioned on the contact side of the support plate opposite the through opening. The at least one contact element projects beyond the at least one electronic component.
    Type: Application
    Filed: February 19, 2015
    Publication date: March 23, 2017
    Inventors: Dominik Geisler, Ricardo Ehrenpfordt, Viktor Morosow, Frederik Ante
  • Patent number: 9588005
    Abstract: Measures are described which simplify the functional testing of a component having an MEMS element provided with a pressure-sensitive sensor diaphragm, and which allow a self-calibration of the component even after it is already in place, i.e., following the end of the production process. The component has a housing, in which are situated at least one MEMS element having a pressure-sensitive sensor diaphragm and a switching arrangement for detecting the diaphragm deflections as measuring signals; an arrangement for analyzing the measuring signals; and an arrangement for the defined excitation of the sensor diaphragm. The housing has at least one pressure connection port. The arrangement for exciting the sensor diaphragm includes at least one selectively actuable actuator component for generating defined pressure pulses that act on the sensor diaphragm.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 7, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Juergen Graf, Christoph Schelling, Frederik Ante, Michael Curcic