Patents by Inventor Richard A. Nelson

Richard A. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160160198
    Abstract: Provided herein are mutant endonuclease V enzymes that are capable of nicking an inosine-containing DNA sequence. Nucleic acid assays and agents that employ such mutant endonuclease V enzymes to introduce a nick into a target DNA including one or more inosine, and uses a DNA polymerase to generate amplicons of a target DNA are also described.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 9, 2016
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossman, Anuradha Sekher
  • Publication number: 20160153868
    Abstract: A system for extracting material from a region of interest includes a fluid delivery base comprising an inlet channel and an outlet channel formed within the fluid delivery base; a gasket affixed to the fluid delivery base, wherein the gasket comprises at least one opening exposing an open end of the inlet channel and an open end of the outlet channel; a support comprising a sample-supporting surface facing the gasket and an opposing surface; and an alignment member coupled to the opposing surface in a fixed position and such that the support is positioned between the fluid delivery base and the alignment member, wherein one or both of the alignment member or the fluid delivery base are biased towards one another by a force (e.g., a magnet or spring force) and wherein the fluid delivery base is separable from the support and configured to move along a plane of the sample-supporting surface to align with the alignment member.
    Type: Application
    Filed: December 1, 2014
    Publication date: June 2, 2016
    Inventors: John Richard Nelson, Wei Gao, Christopher Michael Puleo, Todd Frederick Miller, Christine Lynne Pitner, David Andrew Shoudy, Alex David Corwin
  • Patent number: 9353393
    Abstract: Methods and kits for efficient amplification of nucleic acids are provided. The disclosure generally relates to methods and kits for nucleic acid amplification of target nucleic acids of interest. The methods described herein promote the synthesis of the target nucleic acid (i.e., template nucleic acid) by reducing the production of undesirable primer-dimer structures and chimeric nucleic acid products during the amplification process by using novel modified primers.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: May 31, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Gregory Andrew Grossmann, Robert Scott Duthie, Sonali Jagdish Shah, Ryan Charles Heller
  • Publication number: 20160146808
    Abstract: The present disclosure provides an apparatus comprising an air circulating device, an allergen source comprising an allergen, and a housing. The housing can be collapsible, portable, disposable and configurable. The present disclosure also provides a method comprising positioning an allergen source comprising an allergen in a chamber, distributing at least a portion of the allergen from the allergen source within the chamber, and collecting at least a portion of the distributed allergen. In an embodiment, the level of the shed allergen can be used to measure the effectiveness of various measures implemented to reduce airborne Fel d1 that is emitted from soiled cat litter. In another embodiment, the allergen can be introduced at a desired level in the chamber, and the resultant symptoms of a subject (e.g. a human) within the chamber can be identified and correlated with the amount of allergen.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 26, 2016
    Inventors: Richard Nelson, Ebenzer Satyaraj
  • Patent number: 9333463
    Abstract: A device and a system for eluting biomolecules from biological sample by electroelution are provided. The device for electroelution of biomolecules from a biological sample is constituted with a housing configured to receive an electrolyte and the biological sample, at least two electrodes comprising conductive redox polymers operationally coupled to the housing, and a biomolecule impermeable layer disposed on at least one of the electrodes. The biomolecule impermeable layer disposed on at least one of the electrodes to prevent the biomolecules from reaching the electrode. A system is provided, wherein the system comprises a sample collection port, one or more reservoirs comprising a buffer, a solvent, a reagent or combinations thereof, an device for electroelution, and a controller.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: May 10, 2016
    Assignee: General Electric Company
    Inventors: Christopher Michael Puleo, John Richard Nelson, Patrick McCoy Spooner, Ralf Lenigk, Nichole Lea Wood, Li Zhu, Craig Patrick Galligan
  • Publication number: 20160123926
    Abstract: A method of isolating nucleic acids from a biological material, comprises applying the biological material on a substrate comprising one or more cell lysis reagents impregnated therein; applying a fluid to the biological material applied on the substrate; extracting the nucleic acids from the biological material applied on the substrate; and collecting the extracted nucleic acids in a substantially intact form, wherein the collected nucleic acid has a molecular weight greater than or equal to 20 kb.
    Type: Application
    Filed: September 25, 2015
    Publication date: May 5, 2016
    Inventors: John Richard Nelson, Christopher Michael Puleo, Erin Jean Finehout, Patrick McCoy Spooner, Kashan Ali Shaikh, Xiaohui Chen, Li Zhu
  • Patent number: 9279150
    Abstract: Provided herein are mutant endonuclease V enzymes that are capable of nicking an inosine-containing DNA sequence. Nucleic acid assays and agents that employ such mutant endonuclease V enzymes to introduce a nick into a target DNA including one or more inosine, and uses a DNA polymerase to generate amplicons of a target DNA are also described.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 8, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Robert Scott Duthie, Gregory Andrew Grossman, Anuradha Sekher
  • Publication number: 20160053307
    Abstract: Provided herein are methods for generation and amplification of a single-stranded DNA circle in a single reaction vessel from a linear DNA without any intervening purification steps. The single-stranded DNA circle is generated via a template-independent single-stranded DNA ligation. Whole-genome amplification of linear chromosomal DNA in a single tube using ligation-assisted DNA amplification is also provided.
    Type: Application
    Filed: November 5, 2015
    Publication date: February 25, 2016
    Inventors: Ryan Charles Heller, Erik Leeming Kvam, John Richard Nelson
  • Publication number: 20160017613
    Abstract: A method for constructing a concrete structure with light sources embedded therein is provided. An array of light sources with associated circuitry is positioned on a support member. A mold is positioned around the light sources and the associated circuitry on the support member. A binder material is filled in the mold containing the light sources and the associated circuitry on the support member to embed the light sources and the associated circuitry within the binder material. The binder material is allowed to set within the mold containing the embedded light sources and the associated circuitry. The mold and the support member are then removed to obtain the concrete structure embedded with the light sources and the associated circuitry. The embedded light sources illuminate the concrete structure when the embedded light sources are powered on. A decorative upper layer may be created by marbling, veining, etc., in the concrete structure.
    Type: Application
    Filed: May 22, 2015
    Publication date: January 21, 2016
    Inventor: Richard Nelson
  • Publication number: 20160002622
    Abstract: A method is provided herein, wherein the method of capturing a target nucleic acid, comprises applying a nucleic acid capture probe to a capture zone of a needs definition, wherein the nucleic acid capture probe having a first molecular weight comprises at least a sequence that is complimentary to at least a portion of the target nucleic acid sequence and the nucleic acid capture probe is substantially immobilized at the capture zone of the substrate. The method further comprises applying a sample comprising the target nucleic acid having a second molecular weight to a sample application zone of the substrate; wherein the sample comprising the target nucleic acid flows across a length of the substrate from the sample application zone to the capture zone by lateral flow, and the target nucleic acid is captured by the nucleic acid capture probes by hybridization to the capture zone.
    Type: Application
    Filed: December 11, 2014
    Publication date: January 7, 2016
    Inventors: John Richard Nelson, Bing Li
  • Publication number: 20160002621
    Abstract: A method is provided herein, the method includes: applying a sample comprising target nucleic acids to a sample application zone of a substrate; and flowing a nucleic acid amplification reaction mixture across a length of the substrate through the sample application zone to amplify the target nucleic acid forming a nucleic acid amplification product; wherein the target nucleic acid having a first molecular weight is substantially immobilized at the sample application zone and wherein the amplification product having a second molecular weight migrates away from the sample application zone. An associated device is also provided.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: John Richard Nelson, David Roger Moore, Robert Scott Duthie, Matthew Jeremiah Misner, Gregory Andrew Grossmann, Elizabeth Marie Dees, Patrick McCoy Spooner, Erik Leeming Kvam, Andrew Arthur Paul Burns, Vicki Herzl Watkins
  • Publication number: 20160002715
    Abstract: A method is provided herein, the method includes: applying a sample comprising target nucleic acids to a sample application zone of a substrate; applying an aqueous buffer to the sample application zone of the substrate to washes away one or more inhibitors present on the sample application zone; and applying an isothermal nucleic acid amplification reaction mixture to the sample application zone to amplify the target nucleic acid to form a nucleic acid amplification product. The target nucleic acid having a first molecular weight is substantially immobilized at the sample application zone and wherein the amplification product having a second molecular weight.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: John Richard Nelson, Robert Scott Duthie, Christopher Michael Puleo, Patrick McCoy Spooner
  • Patent number: 9217167
    Abstract: Provided herein are methods for generation and amplification of a single-stranded DNA circle in a single reaction vessel from a linear DNA without any intervening purification steps. The single-stranded DNA circle is generated via a template-independent single-stranded DNA ligation. Whole-genome amplification of circulating nucleic acids extracted from blood is provided. Kits for performing the disclosed methods are also provided.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: December 22, 2015
    Assignee: General Electric Company
    Inventors: Ryan Charles Heller, John Richard Nelson, Erik Leeming Kvam
  • Patent number: 9201063
    Abstract: Methods for detecting a plurality of targets in a biological sample are provided. The method comprises contacting the biological sample with a plurality of target-binding probes simultaneously to form a plurality of target-bound probes and observing the signals from the target-bound probes sequentially. An associated kit and device for detection of the plurality of targets are also provided.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 1, 2015
    Assignee: General Electric Company
    Inventors: Anup Sood, John Richard Nelson, Michael John Gerdes
  • Publication number: 20150331249
    Abstract: A projector system using a screen comprised of either a plurality of miniature, reflective, and concave or convex curved surfaces that are arranged in a pattern to create a screen surface for front projection, or a plurality of miniature, transparent, and curved convex or concave lenses that are arranged in a pattern to create a screen surface for rear projection, and a projector system with the pixel capacity to control the color and brightness focused onto many different subsections of each curved surface. Each curved lens or curved mirror surface is small enough so that when viewed from the viewing area, the lit and unlit areas seen within each individual curved surface blend together so that only the average brightness and color of each curved surface can be seen by a viewer.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 19, 2015
    Inventor: Jeremy Richard Nelson
  • Publication number: 20150331306
    Abstract: A projector system using a screen comprised of either a plurality of miniature, reflective, and concave or convex curved surfaces that are arranged in a pattern to create a screen surface for front projection, or a plurality of miniature, transparent, and curved convex or concave lenses that are arranged in a pattern to create a screen surface for rear projection, and a projector system with the pixel capacity to control the color and brightness focused onto many different subsections of each curved surface. Each curved lens or curved mirror surface is small enough so that when viewed from the viewing area, the lit and unlit areas seen within each individual curved surface blend together so that only the average brightness and color of each curved surface can be seen by a viewer.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 19, 2015
    Inventor: Jeremy Richard Nelson
  • Publication number: 20150275282
    Abstract: Provided herein are methods and kits for isothermal nucleic acid amplifications that use a target nucleic acid template; a reaction mixture comprising a DNA polymerase having a strand displacement activity, a deoxyribonucleoside triphosphate (dNTP) mixture, a primer with a 3? end and a 5? end, a molecular crowding reagent, and a buffer solution for amplifying the target nucleic acid template. The buffer solution maintains a low salt concentration of the reaction mixture, and wherein the salt concentration results in a melting temperature (Tm) of the primer at least 10° C. below the reaction temperature. The amplification is effected under isothermal condition.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 1, 2015
    Applicant: General Electric Company
    Inventors: Ryan Charles Heller, John Richard Nelson, Paresh Lakhubhai Patel, Alison Myfanwy Wakefield, Stephen James Capper
  • Publication number: 20150259671
    Abstract: A device, a system, a cartridge and a method for isolating biomolecules from biological materials are provided. The device comprises a substrate; a reagent storage location; and a self-rupturing component comprising a fluid and a pressure source embedded therein, wherein the substrate, the reagent storage location and the self-rupturing component are operationally coupled to each other. A system is provided, wherein the system comprises an extraction matrix, an enclosed matrix housing comprising a biological sample inlet, one or more biomolecule extraction reagents to extract biomolecules and at least one pressure source embedded therein, a fluidic extraction circuit; and a controller for activating the embedded pressure source. A method of isolating nucleic acids from biological materials is also provided.
    Type: Application
    Filed: July 31, 2012
    Publication date: September 17, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Michael Puleo, Ralf Lenigk, John Richard Nelson, Xiaohui Chen, Li Zhu, Erin Jean Finehout, Patrick McCoy Spooner
  • Patent number: 9125845
    Abstract: A method of eliciting an immune response in an organism comprising: providing an unprocessed rolling circle amplification (RCA) product; and administering an effective amount of the unprocessed RCA product to the organism to elicit the immune response, wherein the unprocessed RCA product is prepared from a circular nucleic acid template comprising at least one promoter sequence, and at least one target sequence. A vaccine comprising unprocessed RCA product is also provided and methods for making the same.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Nichole Lea Wood, Brian Michael Davis, Andrew Soliz Torres
  • Publication number: 20150233802
    Abstract: A method of drying a biological sample disposed on a substrate is provided. The method comprises providing the substrate comprising a sample loading area and a heat source; activating the heat source for generating heat; heating the substrate at least above 65° C.; and drying the biological sample. A device for storing sample is also provided, wherein the device comprises a substrate for biological sample-storage; and a heating component that generates heat to maintain a temperature of at least above 65° C. The heating component may contain one or more reagents, wherein the reagents generate heat to maintain a temperature of at least above 65° C.
    Type: Application
    Filed: April 15, 2015
    Publication date: August 20, 2015
    Inventors: Christopher Michael Puleo, John Richard Nelson, Patrick McCoy Spooner, Ralf Lenigk