Patents by Inventor Richard C. Ruby

Richard C. Ruby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6376280
    Abstract: A microcap wafer-level package is provided in which a micro device is connected to bonding pads on a base wafer. A peripheral pad on the base wafer encompasses the bonding pads and the micro device. A cap wafer has gaskets formed thereon using a thick photoresist semiconductor photolithographic process. Bonding pad gaskets match the perimeters of the bonding pads and a peripheral pad gasket matches the peripheral pad on the base wafer. Wells are located inside the perimeters of the bond pad gaskets and are formed to a predetermined depth in the cap wafer. The cap wafer is then placed over the base wafer to cold weld bond the gaskets to the pads and form a hermetically sealed volume between the bonding pad gaskets and the peripheral pad gasket. The cap wafer is then thinned below the predetermined depth until the wells become through holes that provide access to the bonding pads inside the package, but outside the hermetically sealed volume, for connecting wires from a micro device utilizing system.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: April 23, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Richard C. Ruby, Tracy E. Bell, Frank S. Geefay, Yogesh M. Desai
  • Publication number: 20020017713
    Abstract: A microcap wafer-level package is provided in which a micro device is connected to bonding pads on a base wafer. A peripheral pad on the base wafer encompasses the bonding pads and the micro device. A cap wafer has gaskets formed thereon using a thick photoresist semiconductor photolithographic process. Bonding pad gaskets match the perimeters of the bonding pads and a peripheral pad gasket matches the peripheral pad on the base wafer. Wells are located inside the perimeters of the bond pad gaskets and are formed to a predetermined depth in the cap wafer. The cap wafer is then placed over the base wafer to cold weld bond the gaskets to the pads and form a hermetically sealed volume between the bonding pad gaskets and the peripheral pad gasket. The cap wafer is then thinned below the predetermined depth until the wells become through holes that provide access to the bonding pads inside the package, but outside the hermetically sealed volume, for connecting wires from a micro device utilizing system.
    Type: Application
    Filed: October 1, 2001
    Publication date: February 14, 2002
    Inventors: Richard C. Ruby, Tracy E. Bell, Frank S. Geefay, Yogesh M. Desai
  • Patent number: 6265246
    Abstract: A microcap wafer-level package is provided in which a micro device is connected to bonding pads on a base wafer. A peripheral pad on the base wafer encompasses the bonding pads and the micro device. A cap wafer has gaskets formed thereon using a thick photoresist, semiconductor photolithographic process. Bonding pad gaskets match the perimeters of the bonding pads and a peripheral pad gasket matches the peripheral pad on the base wafer. Wells are located inside the perimeters of the bond pad gaskets and are formed to a predetermined depth in the cap wafer. The cap wafer is then placed over the base wafer to cold weld bond the gaskets to the pads and form a hermetically sealed volume between the bonding pad gaskets and the peripheral pad gasket. The cap wafer is then thinned below the predetermined depth until the wells become through holes that provide access to the bonding pads inside the package, but outside the hermetically sealed volume, for connecting wires from a micro device utilizing system.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: July 24, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Richard C. Ruby, Tracy E. Bell, Frank S. Geefay, Yogesh M. Desai
  • Patent number: 6262637
    Abstract: An FBAR-based duplexer that comprises a first port, a second port, a third port, a first band-pass filter connected between the first port and the third port and a series circuit connected between the second port and the third port. The first band-pass filter includes a first ladder circuit having shunt and series elements. Each of the elements of the first ladder circuit comprises a film bulk acoustic resonator (FBAR). The series circuit includes a 90° phase shifter in series with a second band-pass filter. The second band-pass filter includes a second ladder circuit having shunt and series elements. Each of the elements of the second ladder circuit comprises a film bulk acoustic resonator. A band-pass filter comprising shunt elements and series elements in which the series elements and the shunt elements are connected to form a ladder circuit, and each of the elements includes a film bulk acoustic resonator (FBAR).
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: July 17, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Paul D. Bradley, John D. Larson, III, Richard C. Ruby
  • Patent number: 6228675
    Abstract: A microcap wafer-level package is provided in which a micro device is connected to bonding pads on a base wafer. A peripheral pad on the base wafer encompasses the bonding pads and the micro device. A cap wafer is processed to form wells of a predetermined depth in the cap wafer. A conductive material is made integral with the walls of the wells in the cap wafer. The cap wafer has contacts and a peripheral gasket formed thereon where the contacts are capable of being aligned with the bonding pads on the base wafer, and the gasket matches the peripheral pad on the base wafer. The cap wafer is then placed over the base wafer so as to bond the contact and gasket to the pads and form a hermetically sealed volume within the peripheral gasket. The cap wafer is thinned to form a “microcap”. The microcap is thinned below the predetermined depth until the semiconductor dopant is exposed to become conductive vias through the cap wafer to outside the hermetically sealed volume.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: May 8, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Richard C. Ruby, Tracy E. Bell, Frank S. Geefay, Yogesh M. Desai
  • Patent number: 6215375
    Abstract: A bulk acoustic wave device that provides a high spectral purity, high Q, resonator in the radio frequency and microwave frequency ranges. Such resonators may be coupled together to form filters or other frequency selective devices. The bulk acoustical wave filter is constructed from a piezoelectric (PZ) material having a first surface and a second surface and first and second electrodes. The first electrode includes an electrically conducting layer on the first surface, and the second electrode includes an electrically conducting layer on the second surface. The first electrode overlies at least a portion of the second electrode, the portion of the first electrode that overlies the second electrode has a periphery which is a non-rectangular, irregular polygon. In the preferred embodiment of the present invention, the periphery is a three-sided, four-sided, or n-sided irregular polygon in which no two sides are parallel to one another.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: April 10, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Richard C. Ruby, Paul Bradley
  • Patent number: 6060818
    Abstract: An acoustical resonator and a method for making the same. A resonator according to the present invention includes a layer of piezoelectric material sandwiched between first and second electrodes. The first electrode includes a conducting sheet having a RMS variation in height of less than 2 .mu.m. The resonator bridges a cavity in a substrate on which the resonator is constructed. The resonator is constructed by creating a cavity in the substrate and filling the same with a sacrificial material that can be rapidly removed from the cavity after the deposition of the various layers making up the resonator. The surface of the filled cavity is polished to provide a RMS variation in height of less than 0.5 .mu.m. The first electrode is deposited on the polished surface to a thickness that assures that the RMS variation in height of the metallic layer is less than 2 .mu.m. The piezoelectric layer is deposited on the first electrode and the second electrode is then deposited on the piezoelectric layer.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: May 9, 2000
    Assignee: Hewlett-Packard Company
    Inventors: Richard C. Ruby, Yogesh Desai, Donald R. Bradbury
  • Patent number: 5883575
    Abstract: An RF tag having an antenna for receiving a RF signal having a frequency band between first and second frequencies and an acoustical resonator having a resonant frequency related to the first and second frequencies. The acoustical resonator has first and second electrodes that sandwich a layer of piezoelectric material. The antenna is connected to one of these electrodes. The resonator filters the signal received on the antenna. The filter can function either as a notch filter or as a bandpass filter. A resonator that acts as a bandpass filter includes a third electrode and a second layer piezoelectric material sandwiched between the second electrode and the third electrode. A frequency multiplier circuit may be incorporated in the RF tag to provide a response signal that occupies a frequency band at a frequency above the second frequency. In one embodiment of the present invention, multiple resonators having different resonant frequencies are utilized to generate a response code.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: March 16, 1999
    Assignee: Hewlett-Packard Company
    Inventors: Richard C. Ruby, Philip Canfield
  • Patent number: 5873153
    Abstract: An acoustical resonator comprising top and bottom electrodes that sandwich a PZ layer. The resonance frequency of the acoustical resonator may be adjusted after fabrication by utilizing heating elements included in the acoustical resonator and/or by adjusting the thickness of a tuning layer. In the preferred embodiment of the present invention, the electrodes comprise Mo layers. One embodiment of the present invention is constructed on a Si.sub.3 N.sub.4 membrane. A second embodiment of the present invention is constructed such that it is suspended over a substrate on metallic columns. In the preferred embodiment of the present invention, the electrodes are deposited by a method that minimizes the stress in the electrodes.
    Type: Grant
    Filed: August 27, 1996
    Date of Patent: February 23, 1999
    Assignee: Hewlett-Packard Company
    Inventors: Richard C. Ruby, Paul Philip Merchant
  • Patent number: 5780713
    Abstract: A system is described that tunes the resonance frequency of a thin film acoustic resonator to a desired frequency after the resonator is fabricated. The resonator has a metal layer in an acoustic path of the resonator. The system includes a substantial vacuum reaction chamber within which the resonator is located. A heater is provided that heats the metal layer to an elevated temperature to either grow or etch the metal layer depending on a reaction gas introduced into the reaction chamber. A control circuit is also provided that controls the heater to heat the metal layer such that the thickness of the metal layer is adjusted to obtain the desired frequency after fabrication of the resonator. Methods of tuning the resonance frequency of the acoustic resonator to the desired frequency are also described.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: July 14, 1998
    Assignee: Hewlett-Packard Company
    Inventor: Richard C. Ruby
  • Patent number: 5587620
    Abstract: An acoustical resonator comprising top and bottom electrodes that sandwich a PZ layer. The resonance frequency of the acoustical resonator may be adjusted after fabrication by utilizing heating elements included in the acoustical resonator and/or by adjusting the thickness of a tuning layer. In the preferred embodiment of the present invention, the electrodes comprise Mo layers. One embodiment of the present invention is constructed on a Si.sub.3 N.sub.4 membrane. A second embodiment of the present invention is constructed such that it is suspended over a substrate on metallic columns. In the preferred embodiment of the present invention, the electrodes are deposited by a method that minimizes the stress in the electrodes.
    Type: Grant
    Filed: December 21, 1993
    Date of Patent: December 24, 1996
    Assignee: Hewlett-Packard Company
    Inventors: Richard C. Ruby, Paul P. Merchant
  • Patent number: 5552370
    Abstract: A method for making metal/ceramic superconductor thick film structures including the steps of preparing a silver/superconductor ink, applying the ink to a substrate, evaporating the ink's binder, decomposing a silver compound in the residue to coat the superconductor grains, sintering the coated superconductor grains, and oxygenating the superconductor grains through the silver coating. The resultant inter-granular silver increases the critical current and mechanical strength of the superconductor.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: September 3, 1996
    Assignee: Hewlett-Packard Company
    Inventors: John T. Anderson, V. K. Nagesh, Richard C. Ruby
  • Patent number: 5467067
    Abstract: An integration of a micromachined actuator and a signal transmission structure includes a thermal actuator on a side of a displaceable signal line opposite to a fixed signal line. The actuator includes first and second legs. The first leg has a cross-sectional area greater than the second leg, providing a differential in electrical resistance. As current is channeled through the legs, the second leg will elongate more and will deflect both of the legs. The deflection is in a direction to press the displaceable signal line into signal communication with the fixed signal line. Optionally, a thermally operated reset actuator can be positioned to provide a mechanical return of the displaceable signal line. In a preferred embodiment, a microwave transmission environment is provided.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: November 14, 1995
    Assignee: Hewlett-Packard Company
    Inventors: Leslie A. Field, Richard C. Ruby
  • Patent number: 5467068
    Abstract: A micromachined signal switch for vertical displacement includes a fixed substrate having at least one signal line and includes an actuator substrate that is thermally actuated to selectively connect a second signal line to the first signal line. The actuator substrate includes a plurality of legs constructed of materials having sufficiently different coefficients of thermal expansion to create stresses that arc the legs when the legs are subjected to elevated temperatures. In the preferred embodiment, a first material for forming the legs is silicon and a second material is a metal, such as electroplated nickel. A displaceable contact region may be formed integrally with the actuator substrate, but the contact region is preferably a region of an interposer substrate between the fixed substrate and the actuator substrate.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: November 14, 1995
    Assignee: Hewlett-Packard Company
    Inventors: Leslie A. Field, Richard C. Ruby
  • Patent number: 5446811
    Abstract: A micromachined device for selectively switching an optical fiber between a first and a second position includes a working leg that undergoes a greater degree of thermal expansion than a second leg with the conduction of an electrical current through the two legs. In a preferred embodiment, the working leg has a cross-sectional area that is less than that of the second leg, thereby presenting a greater electrical resistance to the current flow. The legs are each fixed to a substrate at first ends and are interconnected at second ends that are free to move relative to the substrate. The difference in electrical resistance provides a differential in thermal expansion, as the working leg lengthens to a greater degree than the second leg. The working leg deforms the second leg and the optical fiber is pressed into a second position until current flow is terminated.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: August 29, 1995
    Assignee: Hewlett-Packard Company
    Inventors: Leslie A. Field, Richard C. Ruby
  • Patent number: 5338507
    Abstract: A method for making metal/ceramic superconductor thick film structures including the steps of preparing a silver/superconductor ink, applying the ink to a substrate, evaporating the ink's binder, decomposing a silver compound in the residue to coat the superconductor grains, sintering the coated superconductor grains, and oxygenating the superconductor grains through the silver coating. The resultant inter-granular silver increases the critical current and mechanical strength of the superconductor.
    Type: Grant
    Filed: August 29, 1991
    Date of Patent: August 16, 1994
    Assignee: Hewlett-Packard Company
    Inventors: John T. Anderson, V. K. Nagesh, Richard C. Ruby
  • Patent number: 5208213
    Abstract: A variable superconducting delay line system and method having a high temperature superconducting trace and ground plane characterized by a variable inductance L per unit length and capacitance C per unit length, wherein the system and method permit users to select a delay time for an incoming signal propagating through a the transmission line. The system is adapted to keep the ratio of L/C constant, while independently changing L and C to achieve the desired delay time, which corresponds to the product of L times C.
    Type: Grant
    Filed: April 12, 1991
    Date of Patent: May 4, 1993
    Assignee: Hewlett-Packard Company
    Inventor: Richard C. Ruby
  • Patent number: 5191236
    Abstract: An electronic clock has a single Josephson junction connected in parallel to a resonant circuit, which is a delay line with a matching resistance at the input end to provide series termination. The opposite end of the delay line is an open end to reflect pulses, and the pulse transit time on the line determines the clock rate. A zero crossing detector is provided to initiate the clock operation when an input signal rises above a given threshold, and a reset circuit is included to turn off the clock when the input signal falls below this threshold. A flip-flop circuit allows the clock to be turned on by alternate initiating signal pulses. A modification includes a pulse rejuvenating circuit at the end of the delay line to offset pulse degradation. All of the circuits are fabricated with Josephson junction elements, and the zero crossing detector, reset circuit, flip-flop circuit and pulse rejuvenator circuits include dc-SQUID's.
    Type: Grant
    Filed: July 16, 1990
    Date of Patent: March 2, 1993
    Assignee: Hewlett-Packard Company
    Inventor: Richard C. Ruby
  • Patent number: 5071826
    Abstract: A method for making metal/ceramic superconductor thick film structures including the steps of preparing a silver/superconductor ink, applying the ink to a substrate, evaporating the ink's binder, decomposing a silver compound in the residue to coat the superconductor grains, sintering the coated superconductor grains, and oxygenating the superconductor grains through the silver coating. The resultant inter-granular silver increases the critical current and mechanical strength of the superconductor.
    Type: Grant
    Filed: October 13, 1989
    Date of Patent: December 10, 1991
    Assignee: Hewlett-Packard Company
    Inventors: John T. Anderson, V. K. Nagesh, Richard C. Ruby
  • Patent number: 5061686
    Abstract: A superconducting power distribution structure for integrated circuits characterized by a support member and a relatively thin superconducting capacitor member. Vias extending through the support member and the capacitor member couple power and ground plates of the capacitor member to power and ground traces on the circuit board. The vias are solder-bump connected to an integrated circuit chip, and the entire chip is cryogenically cooled to cause the plates of the capacitor to superconduct. The superconducting capacitor provides a large reservoir of charge to the integrated circuit chip through minimal inductance and with minimal voltage drop across its power plane.
    Type: Grant
    Filed: May 15, 1989
    Date of Patent: October 29, 1991
    Assignee: Hewlett-Packard Company
    Inventor: Richard C. Ruby