Patents by Inventor Richard Hammond

Richard Hammond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11757008
    Abstract: Layered structures described herein include electronic devices with 2-dimensional electron gas between polar-oriented cubic rare-earth oxide layers on a non-polar semiconductor. Layered structure includes a semiconductor device, comprising a III-N layer or rare-earth layer, a polar rare-earth oxide layer grown over the III-N layer or rare-earth layer, a gate terminal deposited or grown over the polar rare-earth oxide layer, a source terminal that is deposited or epitaxially grown over the layer, and a drain terminal that is deposited or grown over the layer.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: September 12, 2023
    Assignee: IQE plc
    Inventors: Rytis Dargis, Andrew Clark, Richard Hammond, Rodney Pelzel, Michael Lebby
  • Publication number: 20230245884
    Abstract: A method of fabricating a layered structure comprising growing an epitaxial layer on a substrate with a first resistivity proximal to the substrate and a second resistivity (less than the first) distal therefrom. Porosify the epitaxial layer to form a porous layer with porosity >30% proximal to the substrate and ?25% distal from the substrate. Epitaxially grow a semiconductor (channel) layer over the porous layer. Also a layered structure comprising: a substrate; a porous layer; and an epitaxial semiconductor (channel) layer. The porous layer has a first porosity >30% proximal to the substrate and a second porosity ?25% adjacent to the semiconductor layer. The two different porosities can be optimized. The higher porosity is effective at insulating the channel from the substrate. The lower porosity provides a crystalline structure with single crystal orientation exposed that supports the channel layer comprising high quality, low defect, epitaxial growth.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 3, 2023
    Inventors: Richard HAMMOND, Andrew CLARK, Rodney PELZEL
  • Patent number: 11611001
    Abstract: A layered structure (100) for transmission of an acoustic wave, the layered structure (100) comprising: a substrate layer (102); and a second layer (104) over the substrate layer (102), wherein the second layer (104) comprises a plurality of discrete portions (105) adjacent to each other, each discrete portion (105) of the plurality of discrete portions (105) comprising a first subregion (104A) and a second subregion (104B). Also an epitaxial layer (108), grown over the second layer (104), for transmission of the acoustic wave in a major plane of the epitaxial layer (108), wherein a periodicity (?) of a wavelength of the acoustic wave to be transmitted through the epitaxial layer (108) is approximately equal to a sum of a width (dA) of the first subregion (104A) and a width (dB) of the second subregion (104B).
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: March 21, 2023
    Assignee: IQE plc
    Inventors: Andrew Clark, Rodney Pelzel, Richard Hammond
  • Patent number: 11606135
    Abstract: A method of auto-aligning a beam within a receiving electronically steered antenna system comprising a plurality of antenna elements is provided.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: March 14, 2023
    Assignee: HANWHA PHASOR LTD.
    Inventors: John-Paul Szczepanik, Philip Schryber, Richard Hammond Mayo
  • Patent number: 11495670
    Abstract: Systems and methods are described herein to include an epitaxial metal layer between a rare earth oxide and a semiconductor layer. Systems and methods are described to grow a layered structure, comprising a substrate, a first rare earth oxide layer epitaxially grown over the substrate, a first metal layer epitaxially grown over the rare earth oxide layer, and a first semiconductor layer epitaxially grown over the first metal layer. Specifically, the substrate may include a porous portion, which is usually aligned with the metal layer, with or without a rare earth oxide layer in between.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: November 8, 2022
    Assignee: IQE plc
    Inventors: Rodney Pelzel, Andrew Clark, Rytis Dargis, Michael Lebby, Richard Hammond
  • Publication number: 20220254631
    Abstract: A layered structure includes a substrate, a porous layer over the substrate, an epitaxial layer grown directly over the porous layer, and a semiconductor device in the epitaxial layer. The porous layer has a higher resistivity than the substrate. A porosity of the porous layer reduces radio frequency (RF) bleeding from the semiconductor device into the substrate.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 11, 2022
    Inventors: Richard HAMMOND, Drew Nelson, Alan Gott, Rodney Pelzel, Andrew Clark
  • Patent number: 11355617
    Abstract: Certain aspects of the present disclosure generally relate to an integrated circuit (IC) having a heterojunction bipolar transistor (HBT) device. The HBT device generally includes an emitter region, a collector region, and a base region disposed between the emitter region and the collector region, the base region and the collector region comprising different semiconductor materials. The HBT device may also include an etch stop layer disposed between the collector region and the base region. The HBT device also includes an emitter contact, wherein the emitter region is between the emitter contact and the base region, and a collector contact, wherein the collector region is between the collector contact and the base region.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: June 7, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Ranadeep Dutta, Stephen Alan Fanelli, Richard Hammond
  • Patent number: 11355340
    Abstract: A layered structure for semiconductor application is described herein. The layered structure includes a starting material and a fully depleted porous layer formed over the starting material with high resistivity. In some embodiments, the layered structure further includes epitaxial layer grown over the fully depleted porous layer. Additionally, a process of making the layered structure including forming the fully depleted porous layer and epitaxial layer grown over the porous layer is described herein.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: June 7, 2022
    Assignee: IQE plc
    Inventors: Richard Hammond, Drew Nelson, Alan Gott, Rodney Pelzel, Andrew Clark
  • Patent number: 11305527
    Abstract: Provided herein are systems and methods for storing digital information by assembling an identifier nucleic acid molecule from at least a first component nucleic acid molecule and a second component nucleic acid molecule. The system may include a first printhead configured to dispense a first droplet of a first solution comprising the first component nucleic acid molecule onto a coordinate on a substrate, and a second printhead configured to dispense a second droplet of a second solution comprising the second component nucleic acid molecule onto the coordinate on the substrate, such that the first and second component nucleic acid molecules are collocated on the substrate. The system may include a finisher that dispenses a reaction mix onto the coordinate on the substrate to physically link the first and second component nucleic acid molecules, provides a condition necessary to physically link the first and second component nucleic acid molecules, or both.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: April 19, 2022
    Assignee: CATALOG TECHNOLOGIES, INC.
    Inventors: Nathaniel Roquet, Hyunjun Park, Swapnil P. Bhatia, Mike Hazell, Richard Day, Richard Hammond, James Brown, Rodney Richardson, Thomas Redman, Devin Leake
  • Publication number: 20210320214
    Abstract: A layered structure (100) for transmission of an acoustic wave, the layered structure (100) comprising: a substrate layer (102); and a second layer (104) over the substrate layer (102), wherein the second layer (104) comprises a plurality of discrete portions (105) adjacent to each other, each discrete portion (105) of the plurality of discrete portions (105) comprising a first subregion (104A) and a second subregion (104B). Also an epitaxial layer (108), grown over the second layer (104), for transmission of the acoustic wave in a major plane of the epitaxial layer (108), wherein a periodicity (?) of a wavelength of the acoustic wave to be transmitted through the epitaxial layer (108) is approximately equal to a sum of a width (dA) of the first subregion (104A) and a width (dB) of the second subregion (104B).
    Type: Application
    Filed: April 14, 2021
    Publication date: October 14, 2021
    Inventors: Andrew CLARK, Rodney PELZEL, Richard HAMMOND
  • Publication number: 20210194568
    Abstract: A method of auto-aligning a beam within a receiving electronically steered antenna system comprising a plurality of antenna elements is provided.
    Type: Application
    Filed: May 3, 2019
    Publication date: June 24, 2021
    Inventors: John-Paul Szczepanik, Philip SCHRYBER, Richard Hammond MAYO
  • Publication number: 20210187944
    Abstract: Provided herein are systems and methods for storing digital information by assembling an identifier nucleic acid molecule from at least a first component nucleic acid molecule and a second component nucleic acid molecule. The system may include a first printhead configured to dispense a first droplet of a first solution comprising the first component nucleic acid molecule onto a coordinate on a substrate, and a second printhead configured to dispense a second droplet of a second solution comprising the second component nucleic acid molecule onto the coordinate on the substrate, such that the first and second component nucleic acid molecules are collocated on the substrate. The system may include a finisher that dispenses a reaction mix onto the coordinate on the substrate to physically link the first and second component nucleic acid molecules, provides a condition necessary to physically link the first and second component nucleic acid molecules, or both.
    Type: Application
    Filed: March 10, 2021
    Publication date: June 24, 2021
    Inventors: Nathaniel Roquet, Hyunjun Park, Swapnil P. Bhatia, Mike Hazell, Richard Day, Richard Hammond, James Brown, Rodney Richardson, Thomas Redman, Devin Leake
  • Publication number: 20210098600
    Abstract: Certain aspects of the present disclosure generally relate to an integrated circuit (IC) having a heterojunction bipolar transistor (HBT) device. The HBT device generally includes an emitter region, a collector region, and a base region disposed between the emitter region and the collector region, the base region and the collector region comprising different semiconductor materials. The HBT device may also include an etch stop layer disposed between the collector region and the base region. The HBT device also includes an emitter contact, wherein the emitter region is between the emitter contact and the base region, and a collector contact, wherein the collector region is between the collector contact and the base region.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Inventors: Ranadeep DUTTA, Stephen Alan FANELLI, Richard HAMMOND
  • Publication number: 20210020436
    Abstract: A layered structure for semiconductor application is described herein. The layered structure includes a starting material and a fully depleted porous layer formed over the starting material with high resistivity. In some embodiments, the layered structure further includes epitaxial layer grown over the fully depleted porous layer. Additionally, a process of making the layered structure including forming the fully depleted porous layer and epitaxial layer grown over the porous layer is described herein.
    Type: Application
    Filed: January 14, 2020
    Publication date: January 21, 2021
    Inventors: Richard Hammond, Drew Nelson, Alan Gott, Rodney Pelzel, Andrew Clark
  • Publication number: 20210005720
    Abstract: Layered structures described herein include electronic devices with 2-dimensional electron gas between polar-oriented cubic rare-earth oxide layers on a non-polar semiconductor. Layered structure includes a semiconductor device, comprising a III-N layer or rare-earth layer, a polar rare-earth oxide layer grown over the III-N layer or rare-earth layer, a gate terminal deposited or grown over the polar rare-earth oxide layer, a source terminal that is deposited or epitaxially grown over the layer, and a drain terminal that is deposited or grown over the layer.
    Type: Application
    Filed: February 15, 2019
    Publication date: January 7, 2021
    Inventors: Rytis Dargis, Andrew Clark, Richard Hammond, Rodney Pelzel, Michael Lebby
  • Patent number: 10784348
    Abstract: An integrated circuit (IC) may include an active device layer on a front-side surface of a semiconductor device substrate. The IC may also include a front-side dielectric layer having a first surface opposite a second surface, the first surface contacting the active device layer. The IC may further include a porous semiconductor handle substrate contacting the second surface of the front-side dielectric layer. The porous semiconductor handle substrate may be uniformly doped.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: September 22, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Stephen Alan Fanelli, Richard Hammond
  • Publication number: 20200266266
    Abstract: A semiconductor device includes a porous silicon layer on a silicon substrate. The semiconductor device also includes a seal layer on the porous silicon layer. The semiconductor device further includes a high charge carrier mobility material layer on the seal layer. The semiconductor device may further include a strain balancing intermediate layer between the seal layer and the high charge carrier mobility material layer. Different high charge carrier mobility materials can be used in the high charge carrier mobility material layer to form different semiconductor devices.
    Type: Application
    Filed: February 26, 2020
    Publication date: August 20, 2020
    Inventors: Sinan GOKTEPELI, Stephen Alan FANELLI, Richard HAMMOND
  • Patent number: 10700012
    Abstract: A method of dicing a semiconductor wafer may include forming a porous silicon layer along an outline of dies singulated from the semiconductor wafer. The method may include sealing an active surface of the semiconductor wafer, including the porous silicon layer. The method may further include back grinding a rear surface of the semiconductor wafer to expose the porous silicon layer along the outline of the dies. The method also includes etching the semiconductor wafer to release the dies.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: June 30, 2020
    Assignee: Qualcomm Incorporated
    Inventors: Stephen Alan Fanelli, Richard Hammond
  • Patent number: 10629735
    Abstract: A semiconductor device and a method for fabricating a semiconductor device involve a semiconductor layer that includes a first material and a second material. The first and second materials can be silicon and germanium. A contact of the device has a portion proximal to the semiconductor layer and a portion distal to the semiconductor layer. The distal portion includes the first material and the second material. A metal layer formed adjacent to the relaxed semiconductor layer and adjacent to the distal portion of the contact is simultaneously reacted with the relaxed semiconductor layer and with the distal portion of the contact to provide metallic contact material.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: April 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Matthew T. Currie, Richard Hammond
  • Patent number: 10612890
    Abstract: In some embodiments, an apparatus can include an optical device configured to provide a day view image mode and a night view image mode. The optical device may include an optics assembly configured to receive light from a view area and a control circuit including one or more sensors and a display interface. The control circuit may be configured to receive a mode selection input and to selectively enable at least one of the display interface and the one or more sensors in response to the mode selection input indicating a night view image mode. The optical device may also include an optical element responsive to a signal from the control circuit to direct at least a portion of the light toward the one or more sensors.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: April 7, 2020
    Assignee: Talon Precision Optics LLC
    Inventors: John Francis McHale, Douglas Richard Hammond