Patents by Inventor Richard J. Pokorny

Richard J. Pokorny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945900
    Abstract: The present disclosure provides an orthodontic article including the reaction product of the polymerizable composition. Further, the present disclosure provides polymerizable compositions and methods of making an orthodontic article. The method includes obtaining a polymerizable composition and selectively curing the polymerizable composition to form an orthodontic article. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an orthodontic article; and generating, with the manufacturing device by an additive manufacturing process, the orthodontic article based on the digital object. A system is also provided, including a display that displays a 3D model of an orthodontic article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of an orthodontic article.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 2, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. MacMurray, Ahmed S. Abuelyaman, Karl J. L. Geisler, Jodi L. Connell, Ta-Hua Yu
  • Publication number: 20240101839
    Abstract: [Object] To provide a laminate having inorganic nanoparticle-containing surface layer that exhibits a low gloss appearance and inorganic nanoparticle-containing radiation-curable ink. [Resolution Means] A laminate of an embodiment of the present disclosure has a substrate and a surface layer containing a cured product of a radiation-curable ink, the radiation-curable ink containing inorganic nanoparticles, a polyether-modified polymer, and at least one selected from the group consisting of a radiation-curable polymerizable oligomer and a radiation-curable polymerizable monomer, and the surface layer having a 60° surface glossiness of 50.0 GU or less.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 28, 2024
    Inventors: Naota Sugiyama, Katsuya Ono, Richard J. Pokorny, Taiki Ihara, Hiroki Hayashi, Sonja S. Mackey, Hideyuki Hatanaka
  • Publication number: 20240092960
    Abstract: A copolymer preparable by copolymerization of monomer components comprising: a) polydimethylsiloxane mono(meth)acrylate having a molecular weight of from 300 to 10000 grams/mole; b) optionally C3-C10 carboxylic acid-functional mono(meth)acrylate or a salt thereof; c) at least one C5-C16 hydroxyalkyl mono(meth)acrylate; and d) at least one of: i) C10-C30 linear alkyl mono(meth)acrylate optionally having one or two carbon atoms replaced by O or S; or ii) at least one (meth)acrylate represented by the formula wherein: R1 is H or a C1-C4 alkyl group; n is an integer from 0 to 18, inclusive; each X is O, S, C2-C6 oxyalkylenoxy, C2-C6 thioalkylenethio, or a covalent bond; and R2 is independently a C5-C50 hydrocarbyl group. The copolymer is useful as a water- and oil-repellent treatment on a substrate. Certain monomers corresponding to component ii) are also disclosed.
    Type: Application
    Filed: January 18, 2022
    Publication date: March 21, 2024
    Inventors: Cheryl L. S. Elsbernd, Richard J. Pokorny, Chad M. Amb, Nicholas L. Untiedt
  • Publication number: 20240093047
    Abstract: To provide a laminate having an inorganic nanoparticle-containing wear-resistant layer formed by low viscosity ink and an inorganic nanoparticle-containing radiation-curable ink having low viscosity. A laminate according to an embodiment of the present disclosure contains: a substrate, and a wear-resistant layer containing a cured product of a radiation-curable ink, the radiation-curable ink containing inorganic nanoparticles, a compound represented by Formula (1) below, and at least one selected from the group consisting of a radiation-curable polymerizable oligomer and a radiation-curable polymerizable monomer: R1—R2—Si(OR3)3 Formula (1). In Formula (I), R1 is an acryloyl group or a methacryloyl group, R2 is an alkylene group having from 5 to 12 carbon atoms, and R3 is an alkyl group having from 1 to 4 carbon atoms.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 21, 2024
    Inventors: Naota Sugiyama, Katsuya Ono, Richard J. Pokorny, Taiki Ihara, Hiroki Hayashi, Sonja S. Mackey, Hideyuki Hatanaka
  • Patent number: 11904031
    Abstract: An orthodontic article is described comprising the reaction product of a free-radically polymerizable resin; a first free-radical photoinitiator having sufficient absorbance at a first wavelength range; and a second free-radical initiator selected from a second photoinitiator having sufficient absorbance at a second wavelength range, wherein the second wavelength range is different than the first wavelength range, or a thermal free-radical initiator. In some embodiments, the first free-radical photoinitiator exhibits a maximum absorbance at a wavelength of the range of 370-380 nm or 320-330 nm and/or comprises photoinitiator groups selected from acyl phosphine oxide or alkyl amine acetophenone. Also described are photopolymerizable compositions and methods.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: February 20, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Saswata Chakraborty, Benjamin C. MacMurray, Eric W. Nelson, Thomas P. Klun, Richard J. Pokorny, Wayne S. Mahoney, Chad M. Amb, George W. Griesgraber, Dana R. Reed, Ahmed S. Abuelyaman, Robert S. Clough, James D. Hansen, Daniel J. Skamser, Ian Dailey, John M. Riedesel
  • Publication number: 20230392027
    Abstract: Coating compositions including a nanoparticle layer including nanoparticles and a curable resin and a curable resin layer comprising the curable resin, where the nanoparticle layer has a thickness of 0.2 ?m to 8 ?m, and where the nanoparticle layer includes less than 40 vol. % of the curable resin. Methods for preparing the coating compositions, laminates including the coating compositions, and articles including the laminates are provided.
    Type: Application
    Filed: June 1, 2023
    Publication date: December 7, 2023
    Inventors: Benjamin R. Coonce, Matthew Burch, John C. Clark, Richard J. Pokorny, Benjamin G. Sonnek
  • Publication number: 20230390991
    Abstract: Presently described are methods of making an article comprising providing a structured film (1100) comprising a thermoformable planar base (212) layer and a structured surface (116, 216) layer disposed on a major surface (1200) of the planar base (212) layer wherein the structured surface (116, 216) layer comprises a different organic polymeric material than the thermoformable planar base (212) layer, and thermoforming the structured film (1100) into a thermoformed article (1000). Also described are thermoformed and thermoformable articles.
    Type: Application
    Filed: December 7, 2021
    Publication date: December 7, 2023
    Inventors: Raymond P. Johnston, Jodi L. Connell, Karl J.L. Geisler, Jeffrey L. Solomon, Kristal L. Schutta, Conrad Lather, Ta-Hua Yu, Anthony F. Schultz, Duane D. Fansler, Richard J. Pokorny
  • Patent number: 11827811
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a population of semi-reactive nanoparticles dispersed within the one or more multifunctional (meth)acrylate monomers. The population of semi-reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 11827810
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 11827802
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of non-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 11787970
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of reactive nanoparticles. The first population of reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm, and a second population of non-reactive nanoparticles. The second population of non-reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 17, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Peter D. Condo, D. Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Publication number: 20230322966
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 12, 2023
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray
  • Publication number: 20230305210
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 28, 2023
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, John R. Jacobson, Chunjie Zhang
  • Patent number: 11708428
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer. Often, the polyurethane methacrylate polymer has a weight average molecular weight of 8,000 g/mol or greater. The present disclosure further provides an article and methods thereof.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: July 25, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. MacMurray
  • Patent number: 11709299
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element. The optical film includes a protective coating having an average thickness of no more than 30 micrometers. The protective coating includes an at least partially cured composition. The composition includes 70 to 96 weight percent of urethane (meth)acrylate compound having an average (meth)acrylate functionality of 2 to 9.5, and 2 to 20 weight percent of (meth)acrylate monomer having a (meth)acrylate functionality of 1 to 2.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: July 25, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, John R. Jacobson, Chunjie Zhang, Jung-Sheng Wu
  • Patent number: 11693168
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: July 4, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. Degraw, John R. Jacobson, Chunjie Zhang
  • Publication number: 20230159680
    Abstract: Orthodontic articles and polymerizable resin compositions are described. The orthodontic article comprises a cured composition comprising the reaction product of free-radically polymerizable resin comprising 30 to 70 wt. %, inclusive, of at least one urethane component, and 25 to 70 wt. %, inclusive, of reactive diluent(s) comprising at least one monofunctional (meth)acrylate monomer. The polymerizable resin comprises no greater than 35 wt. % of reactive diluent(s) having a high affinity for water. Reactive diluent(s) such as monofunctional (meth)acrylate monomers having a high affinity for water have low log P values. In one embodiment, the polymerizable resin comprises at least one acidic monomer.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 25, 2023
    Inventors: Tianyu Wu, Saswata Chakraborty, Benjamin C. MacMurray, Richard J. Pokorny, Thomas P. Klun, Wayne S. Mahoney, Chad M. Amb, Ahmed Abuelyaman, Robert S. Clough, John M. Riedesel, James D. Hansen, Ian Dailey, Daniel J. Skamser, Eric W. Nelson, George W. Griesgraber, Dana R. Reed
  • Patent number: 11631829
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent energy dissipation layer disposed on the transparent polymeric substrate layer. The transparent energy dissipation layer includes cross-linked polyurethane and a polyacrylate polymer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 18, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Karissa L. Eckert, David Scott Thompson, Ryan M. Braun, Catherine A. Leatherdale, Michael A. Johnson, Steven D. Solomonson, Richard J. Pokorny, John J. Stradinger, Kevin R. Schaffer, Joseph D. Rule, Peter D. Condo, Derek W. Patzman
  • Patent number: 11584817
    Abstract: Orthodontic articles and polymerizable resin compositions are described. The orthodontic article comprises a cured composition comprising the reaction product of free-radically polymerizable resin comprising 30 to 70 wt. %, inclusive, of at least one urethane component, and 25 to 70 wt. %, inclusive, of reactive diluent(s) comprising at least one monofunctional (meth)acrylate monomer. The polymerizable resin comprises no greater than 35 wt. % of reactive diluent(s) having a high affinity for water. Reactive diluent(s) such as monofunctional (meth)acrylate monomers having a high affinity for water have low log P values. In one embodiment, the polymerizable resin comprises at least one acidic monomer.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: February 21, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Tianyu Wu, Saswata Chakraborty, Benjamin C. MacMurray, Richard J. Pokorny, Thomas P. Klun, Wayne S. Mahoney, Chad M. Amb, Ahmed S. Abuelyaman, Robert S. Clough, John M. Riedesel, James D. Hansen, Ian Dailey, Daniel J. Skamser, Eric W. Nelson, George W. Griesgraber, Dana R. Reed
  • Publication number: 20220410511
    Abstract: An optical assembly (200) including an encapsulated multilayer optical film (250). Methods of making and using such optical assemblies also are disclosed.
    Type: Application
    Filed: December 1, 2020
    Publication date: December 29, 2022
    Inventors: Gregg A. Ambur, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, Thomas P. Klun, Benjamin R. Coonce, Richard J. Pokorny, Chunjie Zhang, Laurent Froissard, Joseph S. Warner