Patents by Inventor Richard J. Pokorny

Richard J. Pokorny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827811
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a population of semi-reactive nanoparticles dispersed within the one or more multifunctional (meth)acrylate monomers. The population of semi-reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 11827802
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of non-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 11827810
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 11787970
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of reactive nanoparticles. The first population of reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm, and a second population of non-reactive nanoparticles. The second population of non-reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 17, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Peter D. Condo, D. Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Publication number: 20230322966
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 12, 2023
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray
  • Publication number: 20230305210
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 28, 2023
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, John R. Jacobson, Chunjie Zhang
  • Patent number: 11708428
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer. Often, the polyurethane methacrylate polymer has a weight average molecular weight of 8,000 g/mol or greater. The present disclosure further provides an article and methods thereof.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: July 25, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. MacMurray
  • Patent number: 11709299
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element. The optical film includes a protective coating having an average thickness of no more than 30 micrometers. The protective coating includes an at least partially cured composition. The composition includes 70 to 96 weight percent of urethane (meth)acrylate compound having an average (meth)acrylate functionality of 2 to 9.5, and 2 to 20 weight percent of (meth)acrylate monomer having a (meth)acrylate functionality of 1 to 2.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: July 25, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, John R. Jacobson, Chunjie Zhang, Jung-Sheng Wu
  • Patent number: 11693168
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: July 4, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. Degraw, John R. Jacobson, Chunjie Zhang
  • Publication number: 20230159680
    Abstract: Orthodontic articles and polymerizable resin compositions are described. The orthodontic article comprises a cured composition comprising the reaction product of free-radically polymerizable resin comprising 30 to 70 wt. %, inclusive, of at least one urethane component, and 25 to 70 wt. %, inclusive, of reactive diluent(s) comprising at least one monofunctional (meth)acrylate monomer. The polymerizable resin comprises no greater than 35 wt. % of reactive diluent(s) having a high affinity for water. Reactive diluent(s) such as monofunctional (meth)acrylate monomers having a high affinity for water have low log P values. In one embodiment, the polymerizable resin comprises at least one acidic monomer.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 25, 2023
    Inventors: Tianyu Wu, Saswata Chakraborty, Benjamin C. MacMurray, Richard J. Pokorny, Thomas P. Klun, Wayne S. Mahoney, Chad M. Amb, Ahmed Abuelyaman, Robert S. Clough, John M. Riedesel, James D. Hansen, Ian Dailey, Daniel J. Skamser, Eric W. Nelson, George W. Griesgraber, Dana R. Reed
  • Patent number: 11631829
    Abstract: A display film includes a transparent polymeric substrate layer and a transparent energy dissipation layer disposed on the transparent polymeric substrate layer. The transparent energy dissipation layer includes cross-linked polyurethane and a polyacrylate polymer. The transparent energy dissipation layer has a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 18, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Karissa L. Eckert, David Scott Thompson, Ryan M. Braun, Catherine A. Leatherdale, Michael A. Johnson, Steven D. Solomonson, Richard J. Pokorny, John J. Stradinger, Kevin R. Schaffer, Joseph D. Rule, Peter D. Condo, Derek W. Patzman
  • Patent number: 11584817
    Abstract: Orthodontic articles and polymerizable resin compositions are described. The orthodontic article comprises a cured composition comprising the reaction product of free-radically polymerizable resin comprising 30 to 70 wt. %, inclusive, of at least one urethane component, and 25 to 70 wt. %, inclusive, of reactive diluent(s) comprising at least one monofunctional (meth)acrylate monomer. The polymerizable resin comprises no greater than 35 wt. % of reactive diluent(s) having a high affinity for water. Reactive diluent(s) such as monofunctional (meth)acrylate monomers having a high affinity for water have low log P values. In one embodiment, the polymerizable resin comprises at least one acidic monomer.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: February 21, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Tianyu Wu, Saswata Chakraborty, Benjamin C. MacMurray, Richard J. Pokorny, Thomas P. Klun, Wayne S. Mahoney, Chad M. Amb, Ahmed S. Abuelyaman, Robert S. Clough, John M. Riedesel, James D. Hansen, Ian Dailey, Daniel J. Skamser, Eric W. Nelson, George W. Griesgraber, Dana R. Reed
  • Publication number: 20220410511
    Abstract: An optical assembly (200) including an encapsulated multilayer optical film (250). Methods of making and using such optical assemblies also are disclosed.
    Type: Application
    Filed: December 1, 2020
    Publication date: December 29, 2022
    Inventors: Gregg A. Ambur, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, Thomas P. Klun, Benjamin R. Coonce, Richard J. Pokorny, Chunjie Zhang, Laurent Froissard, Joseph S. Warner
  • Patent number: 11503720
    Abstract: Flexible devices including conductive traces with enhanced stretchability, and methods of making and using the same are provided. The circuit die is disposed on a flexible substrate. Electrically conductive traces are formed in channels on the flexible substrate to electrically contact with contact pads of the circuit die. A first polymer liquid flows in the channels to cover a free surface of the traces. The circuit die can also be surrounded by a curing product of a second polymer liquid.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: November 15, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Saagar Shah, Mikhail L. Pekurovsky, Ankit Mahajan, Lyudmila A. Pekurovsky, Jessica Chiu, Jeremy K. Larsen, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Richard J. Pokorny, Benjamin R. Coonce, Chad M. Amb, Thomas P. Klun
  • Patent number: 11447657
    Abstract: A curable composition comprises: a) 91 to 98.2 weight percent of: (i) at least one polymerizable compound containing at least one carbamylene group; or (ii) at least one polyurethane precursor system; and b) 0.2 to 9 weight percent of alpha alumina particles having a particle size distribution with a Dv50 of from 0.1 to 1 micron, wherein the weight percentages of a) and b) are based upon the total amount of a) and b). Cured compositions and their use in thermoforming are also disclosed.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 20, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Chunjie Zhang, Richard J. Pokorny, Benjamin R. Coonce, Benjamin G. Sonnek, Gregg A. Ambur, Jung-Sheng Wu
  • Publication number: 20220242991
    Abstract: Polymerizable compositions suitable for use for 3D printed (e.g. orthodontic) articles, especially orthodontic alignment trays, are described. The polymerizable composition comprises a) 30-70 parts by weight of (meth)acrylate monomer(s); and b) urethane (meth)acrylate polymer; wherein the reaction product comprises at least 1 wt. % polymerized units of a multifunctional compound comprising pendent cyclic moieties. The orthodontic article comprises the reaction product of a polymerizable composition as described herein. The urethane (meth)acrylate polymer typically comprises polymerized units of a multifunctional compound comprising pendent cyclic moieties and/or at least one (meth)acrylate monomer comprises polymerized units of a multifunctional compound comprising pendent cyclic moieties. Also described are methods of making an article, non-transitory machine-readable medium comprising data representing a three-dimensional model of an article, and systems.
    Type: Application
    Filed: May 19, 2020
    Publication date: August 4, 2022
    Inventors: Thomas P. Klun, Chad M. Amb, Richard J. Pokorny, Saswata Chakraborty, Benjamin C. Mac Murray, Tianyu Wu, Ahmed S. Abuelyaman, Yongshang Lu, Daniel J. Skamser, Karl J.L. Geisler, John M. Riedesel
  • Publication number: 20220220333
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of non-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Application
    Filed: May 4, 2020
    Publication date: July 14, 2022
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Publication number: 20220213332
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a nanoparticle mixture dispersed within the one or more multifunctional (meth)acrylate monomers. The nanoparticle mixture includes a first population of semi-reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm, and a second population of reactive nanoparticles having an average particle diameter in a range from 5 nm to 60 nm.
    Type: Application
    Filed: May 4, 2020
    Publication date: July 7, 2022
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson
  • Patent number: 11377573
    Abstract: A curable composition that includes a urethane multifunctional (meth)acrylate, an inorganic filler having a primary particle dimension of at least 200 nm, a photoinitiator system that can be activated by electromagnetic radiation in the range of 340-550 nm, a reactive diluent, and a reinforcing silica having a primary particle dimension of 100 nm of less. The sum of the absolute value of the difference in the refractive index of the filler and the refractive index of the composition cured without filler plus the birefringence of the filler is 0.054 or less, i.e. 0.054?|nfiller?nmatrix|+?filler, where nfiller is the refractive index of the filler, nmatrix is the refractive index of the composition cured without filler, and ?filler is the birefringence of the filler.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 5, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Ying Lin, Sheng Ye, Timothy D. Dunbar, Bradley D. Craig, Dong-Wei Zhu, Matthew J. Kryger, Richard J. Pokorny, Michael A. Kropp
  • Publication number: 20220195217
    Abstract: A hardcoat composition includes one or more multifunctional (meth)acrylate monomers, and a population of semi-reactive nanoparticles dispersed within the one or more multifunctional (meth)acrylate monomers. The population of semi-reactive nanoparticles have an average particle diameter in a range from 5 nm to 60 nm.
    Type: Application
    Filed: May 4, 2020
    Publication date: June 23, 2022
    Inventors: Peter D. Condo, David Scott Thompson, John J. Stradinger, Catherine A. Leatherdale, Richard J. Pokorny, Steven D. Solomonson