Patents by Inventor Richard Phillips

Richard Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10365974
    Abstract: Examples include the acquisition of objects names for portion index objects. Some examples include acquisition, from a remote object storage system, of a list of object names for a plurality of portion index objects, stored in the remote object storage system. In some examples, for each of the portion index objects, the acquired object name includes an identifier of an associated deduplicated backup item and information identifying a data range of the associated deduplicated backup item that is represented by metadata of the portion index object.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: July 30, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Andrew Todd, Richard Phillip Mayo
  • Publication number: 20190206677
    Abstract: Methods and apparatuses for depositing material into high aspect ratio features, features in a multi-laminate stack, features having positively sloped sidewalls, features having negatively sloped sidewalls, features having a re-entrant profile, and/or features having sidewall topography are described herein. Methods involve depositing a first amount of material, such as a dielectric (e.g., silicon oxide), into a feature and forming a sacrificial helmet on the field surface of the substrate, etching some of the first amount of the material to open the feature opening and/or smoothen sidewalls of the feature, and depositing a second amount of material to fill the feature. The sacrificial helmet may be the same as or different material from the first amount of material deposited into the feature.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Joseph R. Abel, Pulkit Agarwal, Richard Phillips, Purushottam Kumar, Adrien LaVoie
  • Publication number: 20190176129
    Abstract: A NOx trap catalyst is disclosed. The NOx trap catalyst comprises a noble metal, a NOx storage component, a support, and a first ceria-containing material. The first ceria-containing material is pre-aged prior to incorporation into the NOx trap catalyst, and may have a surface area of less than 80 m2/g. The invention also includes exhaust systems comprising the NOx trap catalyst, and a method for treating exhaust gas utilizing the NOx trap catalyst.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Guy Richard CHANDLER, Paul Richard PHILLIPS, Stuart David REID, Wolfgang STREHLAU, Daniel SWALLOW
  • Publication number: 20190168189
    Abstract: A catalysed substrate monolith 12 for use in treating exhaust gas emitted from a lean-burn internal combustion engine, which catalysed substrate monolith 12 comprising a first washcoat coating 16 and a second washcoat coating 18, wherein the first washcoat coating comprises a catalyst composition comprising at least one platinum group metal (PGM) and at least one support material for the at least one PGM, wherein at least one PGM in the first washcoat coating is liable to volatilise when the first washcoat coating is exposed to relatively extreme conditions including relatively high temperatures, wherein the second washcoat coating comprises at least one metal oxide for trapping volatilised PGM and wherein the second washcoat coating is oriented to contact exhaust gas that has contacted the first washcoat coating.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: Philip Gerald BLAKEMAN, Gavin Michael BROWN, Sougato CHATTERJEE, Andrew Francis CHIFFEY, Jane GAST, Paul Richard PHILLIPS, Raj Rao RAJARAM, Glen SPREITZER, Andrew Peter WALKER
  • Publication number: 20190141817
    Abstract: A lighting control device is provided which includes a microcontroller, at least one wireless transceiver, at least one dimmer, one or more lighting terminals powered by the at least one dimmer, at least one environmental sensor, and at least one input device. In operation, the microcontroller obtains environmental data from the at least one environmental sensor, obtains input data from the at least one input device, transmits the environmental data and the input data to an external server, obtains a lighting operating schedule based on the environmental data and the input data from the external server, and executes the lighting operating schedule from the external server by controlling one or more smart bulbs via the at least one wireless transceiver and controlling the electrical current output to lighting terminals.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Applicant: Lime Green Lighting, LLC
    Inventor: Jonathan Richard Phillips
  • Patent number: 10279314
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: May 7, 2019
    Assignee: Johnson Matthey PLC
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Patent number: 10272421
    Abstract: The present invention relates to a catalytic wall-flow monolith for use in an emission treatment system, the monolith comprising a porous substrate and having a first face and a second face defining a longitudinal direction therebetween and first and second pluralities of channels extending in the longitudinal direction, the first plurality of channels provides a first plurality of inner surfaces and is open at the first face and closed at the second face, and the second plurality of channels is open at the second face and closed at the first face, a first catalytic material is distributed within the porous substrate, a microporous membrane is provided in the first plurality of channels on a first portion, extending in the longitudinal direction, of the first plurality of inner surfaces, and the first portion extends from the first face for 75 to 95% of a length of the first plurality of channels.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: April 30, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Guy Richard Chandler, Paul Richard Phillips
  • Patent number: 10272419
    Abstract: SCR-active molecular-sieve based catalysts with improved low-temperature performance are made by heating a molecular-sieve in a non-oxidizing atmosphere with steam (hydrothermal treatment), or in a reducing atmosphere without steam (thermal treatment), at a temperature in the range of 600-900° C. for a time period from 5 minutes to two hours. The resulting SCR-active iron-containing molecular sieves exhibit a selective catalytic reduction of nitrogen oxides with NH3 or urea at 250° C. that is at least 50% greater than if the iron-containing molecular-sieve were calcined at 500° C. for two hours without performing the hydrothermal or thermal treatment.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: April 30, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Guy Richard Chandler, Jillian Elaine Collier, Alexander Nicholas Michael Green, Desiree Duran-Martin, Paul Richard Phillips, Raj Rao Rajaram, Stuart David Reid
  • Publication number: 20190121705
    Abstract: In some examples, in response to an event at the deduplication system, a system accesses item metadata of a backup item that is backed up to a remote object storage system, the item metadata of the backup item including range information indicating a range of identifier values for portion objects of the backup item stored in the remote object storage system. The system issues, based on the range information, requests to obtain respective attribute information of the portion objects of the backup item stored in the remote object storage system. The system determines, based on the attribute information, a name of a given portion object of the backup item already used.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 25, 2019
    Inventors: Richard Phillip Mayo, David Malcolm Falkinder, Andrew Todd, Peter Thomas Camble
  • Patent number: 10269559
    Abstract: Methods and apparatuses for depositing material into high aspect ratio features, features in a multi-laminate stack, features having positively sloped sidewalls, features having negatively sloped sidewalls, features having a re-entrant profile, and/or features having sidewall topography are described herein. Methods involve depositing a first amount of material, such as a dielectric (e.g., silicon oxide), into a feature and forming a sacrificial helmet on the field surface of the substrate, etching some of the first amount of the material to open the feature opening and/or smoothen sidewalls of the feature, and depositing a second amount of material to fill the feature. The sacrificial helmet may be the same as or different material from the first amount of material deposited into the feature.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: April 23, 2019
    Assignee: Lam Research Corporation
    Inventors: Joseph Abel, Pulkit Agarwal, Richard Phillips, Purushottam Kumar, Adrien LaVoie
  • Patent number: 10240500
    Abstract: An oxidation catalyst for treating an exhaust gas produced by a compression ignition engine comprising: a substrate having an inlet end surface and an outlet end surface; a catalytic material disposed on the substrate, wherein the catalytic material comprises platinum (Pt); and a capture material, wherein the capture material is disposed on the outlet end surface.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: March 26, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, Francois Moreau, Paul Richard Phillips
  • Publication number: 20190085448
    Abstract: Methods and apparatuses for performing atomic layer deposition are provided. A method may include determining an amount of accumulated deposition material currently on an interior region of a deposition chamber interior, wherein the amount of accumulated deposition material changes over the course of processing a batch of substrates; applying the determined amount of accumulated deposition material to a relationship between a number of ALD cycles required to achieve a target deposition thickness, and a variable representing an amount of accumulated deposition material, wherein the applying returns a compensated number of ALD cycles for producing the target deposition thickness given the amount of accumulated deposition material currently on the interior region of the deposition chamber interior; and performing the compensated number of ALD cycles on one or more substrates in the batch.
    Type: Application
    Filed: October 16, 2017
    Publication date: March 21, 2019
    Inventors: Richard Phillips, Chloe Baldasseroni, Nishanth Manjunath
  • Patent number: 10233806
    Abstract: An exhaust system for an internal combustion engine, the exhaust system comprising, a lean NOx trap, a NOx storage and reduction zone on a wall flow monolithic substrate having a pre-coated porosity of 50% or greater, the NOx storage and reduction zone comprising a platinum group metal loaded on one or more first support, the or each first support comprising one or more alkaline earth metal compound, and a selective catalytic reduction zone on a monolithic substrate, the selective catalytic reduction zone comprising copper or iron loaded on a second support, the second support comprising a molecular sieve.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 19, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Gavin Michael Brown, Andrew Francis Chiffey, Paul Richard Phillips, Jonathan Radcliffe
  • Publication number: 20190080903
    Abstract: Methods and apparatuses for depositing material into high aspect ratio features, features in a multi-laminate stack, features having positively sloped sidewalls, features having negatively sloped sidewalls, features having a re-entrant profile, and/or features having sidewall topography are described herein. Methods involve depositing a first amount of material, such as a dielectric (e.g., silicon oxide), into a feature and forming a sacrificial helmet on the field surface of the substrate, etching some of the first amount of the material to open the feature opening and/or smoothen sidewalls of the feature, and depositing a second amount of material to fill the feature. The sacrificial helmet may be the same as or different material from the first amount of material deposited into the feature.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Joseph Abel, Pulkit Agarwal, Richard Phillips, Purushottam Kumar, Adrien LaVoie
  • Patent number: 10213768
    Abstract: A NOx trap catalyst is disclosed. The NOx trap catalyst comprises a noble metal, a NOx storage component, a support, and a first ceria-containing material. The first ceria-containing material is pre-aged prior to incorporation into the NOx trap catalyst, and may have a surface area of less than 80 m2/g. The invention also includes exhaust systems comprising the NOx trap catalyst, and a method for treating exhaust gas utilizing the NOx trap catalyst.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: February 26, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Guy Richard Chandler, Paul Richard Phillips, Stuart David Reid, Wolfgang Strehlau, Daniel Swallow
  • Patent number: 10219351
    Abstract: A lighting control device is provided which includes a microcontroller, at least one wireless transceiver, at least one dimmer, one or more lighting terminals powered by the at least one dimmer, at least one environmental sensor, and at least one input device. In operation, the microcontroller obtains environmental data from the at least one environmental sensor, obtains input data from the at least one input device, transmits the environmental data and the input data to an external server, obtains a lighting operating schedule based on the environmental data and the input data from the external server, and executes the lighting operating schedule from the external server by controlling one or more smart bulbs via the at least one wireless transceiver and controlling the electrical current output to lighting terminals.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 26, 2019
    Assignee: Lime Green Lighting, LLC
    Inventor: Jonathan Richard Phillips
  • Patent number: 10207254
    Abstract: A catalyzed substrate monolith 12 for use in treating exhaust gas emitted from a lean-burn internal combustion engine, which catalyzed substrate monolith 12 comprising a first washcoat coating 16 and a second washcoat coating 18, wherein the first washcoat coating comprises a catalyst composition comprising at least one platinum group metal (PGM) and at least one support material for the at least one PGM, wherein at least one PGM in the first washcoat coating is liable to volatilize when the first washcoat coating is exposed to relatively extreme conditions including relatively high temperatures, wherein the second washcoat coating comprises at least one metal oxide for trapping volatilized PGM and wherein the second washcoat coating is oriented to contact exhaust gas that has contacted the first washcoat coating.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 19, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Gavin Michael Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Glen Spreitzer, Andrew Peter Walker
  • Patent number: 10179329
    Abstract: A catalyst article comprises an SCR catalyst and a NOx adsorber catalyst, where each of these catalysts comprise a metal molecular sieve, each with a different metal. The catalyst article can be close coupled with other components to give a NOX performance advantage from cold start to a combined DOC and SCRF system. Higher NOX conversion is also shown in under-floor location due to NOx storage before SCR light off and selective NH3 slip control, allowing higher NH3 fill levels. Systems comprising the catalyst article and methods of using the catalyst article to give improved hydrocarbon and carbon monoxide control, as well as ammonia slip control, are described. The systems can include flow-through or wall-flow monoliths.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 15, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Richard Phillips, Guy Richard Chandler, Alexander Nicholas Michael Green, Matthew Eben Harris, James Alexander Wylie, Miroslaw Gall, Garry Adam Burgess
  • Patent number: 10179325
    Abstract: An oxidation catalyst for treating an exhaust gas produced by a compression ignition engine comprising: a substrate; a catalytic material disposed on the substrate, wherein the catalytic material comprises platinum (Pt); and a region comprising a capture material, wherein the region is arranged to contact the exhaust gas after the exhaust gas has contacted and/or passed through the catalytic material.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: January 15, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Andrew Francis Chiffey, Christopher Daly, Daniel Hatcher, James Leeland, Francois Moreau, Paul Richard Phillips
  • Publication number: 20180374697
    Abstract: Certain embodiments herein relate to methods of increasing a reaction chamber batch size. A portion of a batch of wafers is processed within the chamber. The processing results in at least some off-target deposition of material on interior surfaces of the reaction chamber. A mid-batch chamber processing is conducted to stabilize the off-target deposition materials accumulated on the chamber interior surfaces. Another portion of the batch of wafers is processed within the chamber. In various embodiments, processing of the chamber (e.g., mid-batch) and subsequent portion of the batch of wafers is repeated until processing of all wafers is complete. Batch size refers to the number of wafers that may be processed in the reaction chamber between chamber clean cycles. Chamber interior surfaces are seasoned prior to batch processing. Seasoning of the chamber interior surfaces involves applying a coating of the same material that may be used for deposition on the wafers during processing of the same.
    Type: Application
    Filed: October 31, 2017
    Publication date: December 27, 2018
    Inventors: Pulkit Agarwal, Purushottam Kumar, Richard Phillips, Adrien LaVoie