Patents by Inventor Richard S. Graf

Richard S. Graf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9659835
    Abstract: A technique for designing an integrated circuit includes placing standard cells across a first surface of a substrate of an integrated circuit (IC) design. At least two unoccupied regions are located across the first surface that do not include standard cells. Aspect ratios for one or more micro fill vias that can be placed in the at least two unoccupied regions are determined. The one or more micro fill vias are placed in the at least two unoccupied regions. Finally, one or more partial thermal vias are placed from a second surface of the integrated circuit, opposite the first surface, to thermally couple the one or more partial thermal vias to the one or more micro fill vias to create thermal paths from the first surface to the second surface.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: May 23, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sundeep Mandal
  • Publication number: 20170125973
    Abstract: A dual bond pad structure for a wafer with laser die attachment and methods of manufacture are disclosed. The method includes forming a bonding layer on a surface of a substrate. The method further includes forming solder bumps on the bonding layer. The method further includes patterning the bonding layer to form bonding pads some of which comprise the solder bumps thereon. The method further includes attaching a laser diode to selected bonding pads using solder connections formed on the laser diode. The method further includes attaching an interposer substrate to the solder bumps formed on the bonding pads.
    Type: Application
    Filed: January 17, 2017
    Publication date: May 4, 2017
    Inventors: Jeffrey P. GAMBINO, Richard S. GRAF, Robert K. LEIDY, Jeffrey C. MALING
  • Publication number: 20170125974
    Abstract: A dual bond pad structure for a wafer with laser die attachment and methods of manufacture are disclosed. The method includes forming a bonding layer on a surface of a substrate. The method further includes forming solder bumps on the bonding layer. The method further includes patterning the bonding layer to form bonding pads some of which comprise the solder bumps thereon. The method further includes attaching a laser diode to selected bonding pads using solder connections formed on the laser diode. The method further includes attaching an interposer substrate to the solder bumps formed on the bonding pads.
    Type: Application
    Filed: January 17, 2017
    Publication date: May 4, 2017
    Inventors: Jeffrey P. GAMBINO, Richard S. GRAF, Robert K. LEIDY, Jeffrey C. MALING
  • Publication number: 20170104054
    Abstract: A structure and method for fabricating a laterally configured thin film varistor surge protection device using low temperature sputtering techniques which do not damage IC device components contiguous to the varistor being fabricated. The lateral thin film varistor may include of a continuous layer of alternating regions of a first metal oxide layer and a second metal oxide layer formed between two laterally spaced electrodes using a low temperature sputtering process followed by a low temperature annealing process.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 13, 2017
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal
  • Publication number: 20170098623
    Abstract: Aspects of the present disclosure include integrated circuit (IC) structures with angled interconnect elements. An IC structure according to the present disclosure can include: an IC chip interconnect surface including a radially inner region positioned within a radially outer region; and a plurality of conductive pillars extending outward from the radially inner region of the IC chip interconnect surface, relative to a radial centerline axis of the radially inner region of the IC chip interconnect surface, wherein the radially inner region of the IC chip interconnect surface is free of conductive pillars thereon.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 6, 2017
    Inventors: David J. West, Charles H. Wilson, Richard S. Graf
  • Patent number: 9608403
    Abstract: A dual bond pad structure for a wafer with laser die attachment and methods of manufacture are disclosed. The method includes forming a bonding layer on a surface of a substrate. The method further includes forming solder bumps on the bonding layer. The method further includes patterning the bonding layer to form bonding pads some of which comprise the solder bumps thereon. The method further includes attaching a laser diode to selected bonding pads using solder connections formed on the laser diode. The method further includes attaching an interposer substrate to the solder bumps formed on the bonding pads.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 28, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Robert K. Leidy, Jeffrey C. Maling
  • Patent number: 9585257
    Abstract: The present invention relates generally to integrated circuit (IC) chip packaging, and more particularly, to a structure and method of forming a glass interposer having thermally conductive vias in addition to electrically conductive vias. The thermally conductive vias help dissipate heat from one or more IC chips, through the glass interposer, into an organic carrying, and then, into an underlying substrate where it can be dissipated.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: February 28, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal, David J. Russell
  • Patent number: 9570422
    Abstract: An electronic device includes a circuit board and a semiconductor device package. The semiconductor device package includes a laminate layer. The semiconductor device package includes a semiconductor die having an active side, an inactive side opposite the active side, and through-silicon vias (TSVs) conductively connecting the active side to the inactive side and conductively connecting the semiconductor die to one of the laminate layer and the circuit board. The semiconductor device package includes a laminate layer having a side attached to the active side or the inactive side semiconductor die. The semiconductor device package includes solder balls at the side of the laminate layer attached to the semiconductor die, around the semiconductor die, and attached to the circuit board.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: February 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: David J. West, Richard S. Graf
  • Patent number: 9559283
    Abstract: A semiconductor device package and method for manufacturing the same, includes a semiconductor substrate including a plurality of embedded thermoelectric couples. The embedded thermoelectric couples can be in trenches and extend partially into the substrate from the handle side of the substrate. An n-type pillar and a p-type pillar are electrically connected using a conducting contact plate to form each of the partially embedded thermoelectric couples. A series connection layer electrically connects the plurality of thermoelectric couples on the handle side. A power source provides electrical current to the series connection layer allowing current to flow through the plurality of the series connected thermoelectric couples. A heat sink is positioned adjacent to the connected thermoelectric couples for transferring heat away from the device side to the heat sink using the thermoelectric couples.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: January 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal
  • Patent number: 9536732
    Abstract: A structure and method for fabricating a laterally configured thin film varistor surge protection device using low temperature sputtering techniques which do not damage IC device components contiguous to the varistor being fabricated. The lateral thin film varistor may consist of a continuous layer of alternating regions of a first metal oxide layer and a second metal oxide layer formed between two laterally spaced electrodes using a low temperature sputtering process followed by a low temperature annealing process.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: January 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal
  • Publication number: 20160365328
    Abstract: Sintered connection structures and methods of manufacture are disclosed. The method includes placing a powder on a substrate and sintering the powder to form a plurality of pillars. The method further includes repeating the placing and sintering steps until the plurality of pillars reach a predetermined height. The method further includes forming a solder cap on the plurality of pillars. The method further includes joining the substrate to a board using the solder cap.
    Type: Application
    Filed: June 11, 2015
    Publication date: December 15, 2016
    Inventors: Richard S. GRAF, Jay F. LEONARD, David J. WEST, Charles H. WILSON
  • Publication number: 20160365329
    Abstract: Sintered connection structures and methods of manufacture are disclosed. The method includes placing a powder on a substrate and sintering the powder to form a plurality of pillars. The method further includes repeating the placing and sintering steps until the plurality of pillars reach a predetermined height. The method further includes forming a solder cap on the plurality of pillars. The method further includes joining the substrate to a board using the solder cap.
    Type: Application
    Filed: March 29, 2016
    Publication date: December 15, 2016
    Inventors: Richard S. GRAF, Jay F. LEONARD, David J. WEST, Charles H. WILSON
  • Patent number: 9508690
    Abstract: An electronic device includes a circuit board and a semiconductor device package. The semiconductor device package includes a laminate layer. The semiconductor device package includes a semiconductor die having an active side, an inactive side opposite the active side, and through-silicon vias (TSVs) conductively connecting the active side to the inactive side and conductively connecting the semiconductor die to one of the laminate layer and the circuit board. The semiconductor device package includes a laminate layer having a side attached to the active side or the inactive side semiconductor die. The semiconductor device package includes solder balls at the side of the laminate layer attached to the semiconductor die, around the semiconductor die, and attached to the circuit board.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: November 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Richard S. Graf, David J. West
  • Patent number: 9496234
    Abstract: An integrated conductive polymer-solder ball structure is provided. The integrated conductive polymer-solder ball structure comprises a sputter seed layer applied to a wafer structure, one or more conductive polymer pad structures applied to the sputtered seed layer at locations on the wafer structure where one or more solder ball structures will be formed, an electroplating layer applied to portions of the one or more conductive polymer pad structures where a photoresist layer has been exposed, and a solder ball formed on each of the electroplating layers thereby forming the one or more solder ball structures.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: November 15, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Richard S. Graf, Kibby B. Horsford, Sudeep Mandal
  • Patent number: 9484239
    Abstract: Mechanisms are provided for sacrificial carrier dicing of semiconductor wafers. A bottom layer of a semiconductor wafer is bonded to a top layer of a sacrificial carrier. The semiconductor wafer is diced into a set of chips, such that the dicing cuts through the semiconductor wafer and into the sacrificial carrier and such that the sacrificial carrier dresses a diamond blade of a saw so as to expose one or more new, sharp layers of diamonds on the diamond blade.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: November 1, 2016
    Assignee: International Business Machines Corporation
    Inventors: Richard S. Graf, Douglas O. Powell, David J. Russell, David J. West
  • Patent number: 9478453
    Abstract: Mechanisms are provided for sacrificial carrier dicing of semiconductor wafers. A bottom layer of a semiconductor wafer is bonded to a top layer of a sacrificial carrier. The semiconductor wafer is diced into a set of chips, such that the dicing cuts through the semiconductor wafer and into the sacrificial carrier and such that the sacrificial carrier dresses a diamond blade of a saw so as to expose one or more new, sharp layers of diamonds on the diamond blade.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: October 25, 2016
    Assignee: International Business Machines Corporation
    Inventors: Richard S. Graf, Douglas O. Powell, David J. Russell, David J. West
  • Patent number: 9472483
    Abstract: A chip fabricated from a semiconductor material is disclosed, which may include active devices located below a first depth from the chip back side, and a structure to remove heat from the active devices to the chip back side. The structure may include thermally conductive partial vias (TCPVs), which may include a recess with a depth, from the chip back side towards the active devices less than the first depth. Each TCPV may include a barrier layer deposited within the recess and deposited upon the back side of the chip. Each TCPV may also include a thermally conductive layer deposited upon the barrier layer. The structure may also include through-silicon vias (TSVs) electrically connected to active devices, extending from the back side to an active device side of the chip to conductively remove heat from the active devices to the back side of the chip.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: October 18, 2016
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal, Sebastian T. Ventrone
  • Publication number: 20160293822
    Abstract: A semiconductor device package and method for manufacturing the same, includes a semiconductor substrate including a plurality of embedded thermoelectric couples. The embedded thermoelectric couples can be in trenches and extend partially into the substrate from the handle side of the substrate. An n-type pillar and a p-type pillar are electrically connected using a conducting contact plate to form each of the partially embedded thermoelectric couples. A series connection layer electrically connects the plurality of thermoelectric couples on the handle side. A power source provides electrical current to the series connection layer allowing current to flow through the plurality of the series connected thermoelectric couples. A heat sink is positioned adjacent to the connected thermoelectric couples for transferring heat away from the device side to the heat sink using the thermoelectric couples.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 6, 2016
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal
  • Publication number: 20160293825
    Abstract: A semiconductor device package and method for manufacturing the same, includes a semiconductor substrate including a plurality of embedded thermoelectric couples. The embedded thermoelectric couples can be in trenches and extend partially into the substrate from the handle side of the substrate. An n-type pillar and a p-type pillar are electrically connected using a conducting contact plate to form each of the partially embedded thermoelectric couples. A series connection layer electrically connects the plurality of thermoelectric couples on the handle side. A power source provides electrical current to the series connection layer allowing current to flow through the plurality of the series connected thermoelectric couples. A heat sink is positioned adjacent to the connected thermoelectric couples for transferring heat away from the device side to the heat sink using the thermoelectric couples.
    Type: Application
    Filed: September 11, 2015
    Publication date: October 6, 2016
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal
  • Publication number: 20160286686
    Abstract: The present invention relates generally to integrated circuit (IC) chip packaging, and more particularly, to a structure and method of forming a glass interposer having one or more embedded peltier devices, alongside electrically conductive vias, to help dissipate heat from one or more IC chips in a multi-dimensional chip package through the glass interposer and into an organic carrier, where it can be dissipated into an underlying substrate.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Sudeep Mandal, David J. Russell