Patents by Inventor Richard S. Graf

Richard S. Graf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8988140
    Abstract: An integrated circuit includes logic regions and dynamically adjustable voltage controllers. A voltage controller connected to each logic region enables voltage adjustment while the chip is operating. Each voltage controller has a selector device connected to voltage input lines providing different voltages. A voltage sensor connected to the output of the selector device provides a supply voltage to one of the logic regions. A control circuit dynamically monitors the supply voltage, captures and stores a digital representation of the supply voltage during each cycle of a clock, and tracks variations over time, based on operation of the logic regions. When variations in the supply voltage exceed an operational threshold of one of the logic regions, the control circuit submits a request to a central controller. When the central controller grants permission, the control circuit dynamically adjusts the voltage by enabling the selector device to choose a different voltage input line.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Richard S. Graf, Joseph A. Iadanza, Faraydon Pakbaz, Jack R. Smith, Sebastian T. Ventrone, Ivan L. Wemple
  • Publication number: 20150035145
    Abstract: Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Hanyi Ding, Richard S. Graf, Gary R. Hill, Wayne H. Woods, JR.
  • Publication number: 20150037913
    Abstract: Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Hanyi Ding, Richard S. Graf, Gary R. Hill, Wayne H. Woods, JR.
  • Publication number: 20150002217
    Abstract: An integrated circuit includes logic regions and dynamically adjustable voltage controllers. A voltage controller connected to each logic region enables voltage adjustment while the chip is operating. Each voltage controller has a selector device connected to voltage input lines providing different voltages. A voltage sensor connected to the output of the selector device provides a supply voltage to one of the logic regions. A control circuit dynamically monitors the supply voltage, captures and stores a digital representation of the supply voltage during each cycle of a clock, and tracks variations over time, based on operation of the logic regions. When variations in the supply voltage exceed an operational threshold of one of the logic regions, the control circuit submits a request to a central controller. When the central controller grants permission, the control circuit dynamically adjusts the voltage by enabling the selector device to choose a different voltage input line.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Richard S. Graf, Joseph A. Iadanza, Faraydon Pakbaz, Jack R. Smith, Sebastian T. Ventrone, Ivan L. Wemple
  • Patent number: 8907470
    Abstract: Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Richard S. Graf, Gary R. Hill, Wayne H. Woods, Jr.
  • Publication number: 20140231992
    Abstract: Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Richard S. Graf, Gary R. Hill, Wayne H. Woods, JR.
  • Patent number: 8756549
    Abstract: Disclosed are embodiments of an integrated circuit chip designed for reliability at low ambient temperatures. The chip substrate can be divided into zones, including at least one temperature-sensitive zone (TSZ) that contains one or more temperature-sensitive circuits. Temperature sensor(s) can be positioned in the semiconductor substrate adjacent to the TSZ. Thermal radiator(s) can be embedded in a metal wiring layer and aligned above the TSZ. The temperature sensor(s) can be operatively connected to the thermal radiator(s) and can trigger operation of the thermal radiator(s) when the temperature in the TSZ is below a predetermined threshold temperature. Additionally, an on-chip power control system can be operatively connected to the thermal radiator(s) so that operation of the thermal radiator(s) is only triggered when a circuit within the TSZ is about to be powered up. Also disclosed are associated embodiments of a system and method for designing such an integrated circuit chip.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Richard S. Graf, Keishi Okamoto, Faraydon Pakbaz, Jack R. Smith, Sebastian T. Ventrone
  • Patent number: 8448118
    Abstract: Solutions for determining intra-die wirebond pad placement locations in an integrated circuit (IC) die are disclosed. In one embodiment, a method includes generating a dividing band in the IC die, the dividing band dividing the IC die into a first region and a second region; determining a voltage (IR) drop across the first region and the second region; comparing the IR drops across the regions; and in response to the IR drops being substantially unequal, moving the dividing band, determining new IR drops across the regions, and comparing the new IR drops until the IR drops are substantially equal. The dividing band may provide desired locations for intra-die wirebond pads.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Richard S. Graf, Haruo Itoh, Wai Ling Chung-Maloney
  • Patent number: 8304290
    Abstract: An apparatus, system, and method are disclosed for connecting an integrated circuit device to a substrate. A plurality of standard diameter pillars and three or more increased diameter pillars are disposed on an integrated circuit device. The increased diameter pillars have a diameter that is greater than the standard diameter pillars and a height that is similar to the standard diameter pillars. The standard diameter pillars and the increased diameter pillars form a pattern on the integrated circuit device that corresponds to contact pads on a substrate opposite the integrated circuit device. A first group of solder bumps is disposed between the standard diameter pillars and the contact pads. A second group of solder bumps is disposed between the increased diameter pillars and the contact pads. The second group of solder bumps has pre-connection heights that are greater than pre-connection heights of the first group of solder bumps.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Richard S. Graf, Thomas E. Lombardi, Sudipta K. Ray, David J. West
  • Publication number: 20120216164
    Abstract: Solutions for determining intra-die wirebond pad placement locations in an integrated circuit (IC) die are disclosed. In one embodiment, a method includes generating a dividing band in the IC die, the dividing band dividing the IC die into a first region and a second region; determining a voltage (IR) drop across the first region and the second region; comparing the IR drops across the regions; and in response to the IR drops being substantially unequal, moving the dividing band, determining new IR drops across the regions, and comparing the new IR drops until the IR drops are substantially equal. The dividing band may provide desired locations for intra-die wirebond pads.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard S. Graf, Haruo Itoh, Wai Ling Chung-Maloney
  • Publication number: 20120168416
    Abstract: Disclosed are embodiments of an integrated circuit chip designed for reliability at low ambient temperatures. The chip substrate can be divided into zones, including at least one temperature-sensitive zone (TSZ) that contains one or more temperature-sensitive circuits. Temperature sensor(s) can be positioned in the semiconductor substrate adjacent to the TSZ. Thermal radiator(s) can be embedded in a metal wiring layer and aligned above the TSZ. The temperature sensor(s) can be operatively connected to the thermal radiator(s) and can trigger operation of the thermal radiator(s) when the temperature in the TSZ is below a predetermined threshold temperature. Additionally, an on-chip power control system can be operatively connected to the thermal radiator(s) so that operation of the thermal radiator(s) is only triggered when a circuit within the TSZ is about to be powered up. Also disclosed are associated embodiments of a system and method for designing such an integrated circuit chip.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Richard S. Graf, Keishi Okamoto, Faraydon Pakbaz, Jack R. Smith, Sebastian T. Ventrone
  • Publication number: 20110151627
    Abstract: An apparatus, system, and method are disclosed for connecting an integrated circuit device to a substrate. A plurality of standard diameter pillars and three or more increased diameter pillars are disposed on an integrated circuit device. The increased diameter pillars have a diameter that is greater than the standard diameter pillars and a height that is similar to the standard diameter pillars. The standard diameter pillars and the increased diameter pillars form a pattern on the integrated circuit device that corresponds to contact pads on a substrate opposite the integrated circuit device. A first group of solder bumps is disposed between the standard diameter pillars and the contact pads. A second group of solder bumps is disposed between the increased diameter pillars and the contact pads. The second group of solder bumps has pre-connection heights that are greater than pre-connection heights of the first group of solder bumps.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard S. Graf, Thomas E. Lombardi, Sudipta K. Ray, David J. West