Patents by Inventor Rintaro Koda

Rintaro Koda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100285625
    Abstract: A method for making a light-emitting element assembly including a support substrate having a first surface, a second surface facing the first surface, a recessed portion, and a conductive material layer formed over the first surface and the inner surface of the recessed portion, and a light-emitting element. The light-emitting element has a laminated structure including a first compound semiconductor layer, a light-emitting portion, and a second compound semiconductor layer, at least the second compound semiconductor layer and the light-emitting portion constituting a mesa structure. The light-emitting element further includes an insulating layer formed, a second electrode, and a first electrode. The mesa structure is placed in the recessed portion so that the conductive material layer and the second electrode are in at least partial contact with each other, and light emitted from the light-emitting portion is emitted from the second surface side of the first compound semiconductor layer.
    Type: Application
    Filed: July 22, 2010
    Publication date: November 11, 2010
    Applicant: SONY CORPORATION
    Inventors: Rintaro Koda, Takahiro Arakida, Satoshi Taniguchi, Yuji Masui, Nobuhiro Suzuki, Tomoyuki Oki, Chiyomi Uchiyama, Kayoko Kikuchi
  • Patent number: 7791085
    Abstract: Disclosed herein is a semiconductor light emitting apparatus that includes: a semiconductor light emitting device having a first semiconductor laminate structure including a light emitting region, and a light outgoing window permitting the light emitted from the light emitting region to go out therethrough in the lamination direction; a light transmitting part provided in a region corresponding to the light emitting region; a metal part provided in a region, corresponding to an outer peripheral region of the light emitting region, of the first semiconductor laminate structure; and a semiconductor light detector having a second semiconductor laminate structure including a light absorbing layer for absorbing a part of the light incident from the lamination direction. In the apparatus, the semiconductor light emitting device, a layer including the light transmitting part and the metal part, and the semiconductor light detector are integrally formed in the state of being laminated in this order.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: September 7, 2010
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yoshinori Yamauchi, Norihiko Yamaguchi, Yuji Masui
  • Patent number: 7787512
    Abstract: A light-emitting element assembly includes a support substrate having a first surface, a second surface facing the first surface, a recessed portion, and a conductive material layer formed over the first surface and the inner surface of the recessed portion, and a light-emitting element. The light-emitting element has a laminated structure including a first compound semiconductor layer, a light-emitting portion, and a second compound semiconductor layer, at least the second compound semiconductor layer and the light-emitting portion constituting a mesa structure. The light-emitting element further includes an insulating layer formed, a second electrode, and a first electrode. The mesa structure is placed in the recessed portion so that the conductive material layer and the second electrode are in at least partial contact with each other, and light emitted from the light-emitting portion is emitted from the second surface side of the first compound semiconductor layer.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 31, 2010
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Satoshi Taniguchi, Yuji Masui, Nobuhiro Suzuki, Tomoyuki Oki, Chiyomi Uchiyama, Kayoko Kikuchi
  • Publication number: 20100202486
    Abstract: A vertical cavity surface emitting laser capable of reducing parasitic capacitance while suppressing power consumption, and a method of manufacturing thereof are provided. The vertical cavity surface emitting laser includes a columnar mesa including, on a substrate, a first multilayer reflector, an active layer, and a second multilayer reflector in order from the substrate side, and also including a current narrowing layer. The columnar portion of the mesa including the active layer and the current narrowing layer is formed within a region opposed to the first multilayer reflector and a region opposed to the second multilayer reflector, and a cross section area of the columnar portion is smaller than a cross section area of the second multilayer reflector.
    Type: Application
    Filed: January 20, 2010
    Publication date: August 12, 2010
    Applicant: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Terukazu Naruse, Rintaro Koda, Naoki Jogan
  • Publication number: 20100200868
    Abstract: A semiconductor light-emitting device includes a semiconductor light-emitting element including a first multilayer reflector, an active layer having a light-emitting region, and a second multilayer reflector in the stated order; a semiconductor light-detecting element disposed opposite the first multilayer reflector in relation to the semiconductor light-emitting element and including a light-absorbing layer configured to absorb light emitted from the light-emitting region; a transparent substrate disposed between the semiconductor light-emitting element and the semiconductor light-detecting element; a first metal layer having a first opening in a region including a region opposite the light-emitting region and bonding the semiconductor light-emitting element and the substrate; and a second metal layer having a second opening in a region including a region opposite the light-emitting region and bonding the semiconductor light-detecting element and the substrate.
    Type: Application
    Filed: January 28, 2010
    Publication date: August 12, 2010
    Applicant: Sony Corporation
    Inventors: Yuji Masui, Rintaro Koda, Osamu Maeda, Takahiro Arakida, Terukazu Naruse, Naoki Jogan
  • Publication number: 20100193805
    Abstract: A semiconductor light-emitting device includes a semiconductor light-emitting element including a first multilayer reflector, an active layer having a light-emitting region, and a second multilayer reflector in the stated order; a semiconductor light-detecting element disposed opposite the first multilayer reflector in relation to the semiconductor light-emitting element and including a light-absorbing layer configured to absorb light emitted from the light-emitting region; and an insulating oxidized layer disposed between the semiconductor light-emitting element and the semiconductor light-detecting element.
    Type: Application
    Filed: December 29, 2009
    Publication date: August 5, 2010
    Applicant: Sony Corporation
    Inventors: Naoki JOGAN, Yuji Masui, Rintaro Koda, Takahiro Arakida
  • Publication number: 20100080107
    Abstract: A method for producing a semiconductor laser having an edge window structure includes the steps of forming masks of insulating films on a nitride-based III-V compound semiconductor substrate including first regions and second regions periodically arranged in parallel therebetween; and growing a nitride-based III-V compound semiconductor layer in a region not covered by the masks. The first region between each two adjacent second regions has two or more positions, symmetrical with respect to a center line thereof, where laser stripes are to be formed. The masks are formed on one or both sides of each of the positions where the laser stripes are to be formed at least near a position where edge window structures are to be formed such that the masks are symmetrical with respect to the center line. The nitride-based III-V compound semiconductor layer includes an active layer containing at least indium and gallium.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Applicant: SONY CORPORATION
    Inventors: Rintaro Koda, Masaru Kuramoto, Eiji Nakayama, Tsuyoshi Fujimoto
  • Publication number: 20100046565
    Abstract: A vertical cavity surface emitting laser includes a layer-stack structure including, on a substrate, a transverse-mode adjustment layer, a first multilayer reflecting mirror, an active layer having a light emission region, and a second multilayer reflecting mirror in order from the substrate side, and including a current confinement layer in which a current injection region is formed in a region corresponding to the light emission region in the first multilayer reflecting mirror, between the first multilayer reflecting mirror and the active layer, between the active layer and the second multilayer reflecting mirror, or in the second multilayer reflecting mirror. In the transverse-mode adjustment layer, reflectance at an oscillation wavelength in the region opposite to a center of the light emission region is higher than that at an oscillation wavelength in the region opposite to an outer edge of the light emission region.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 25, 2010
    Applicant: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Rintaro Koda, Osamu Maeda, Tomoyuki Oki, Naoki Jogan
  • Publication number: 20090285253
    Abstract: A semiconductor light emitting device includes a first-conductivity-type first multilayer film reflecting mirror, and a second-conductivity-type second multilayer film reflecting mirror; a cavity layer; and a first conductive section, a second conductive section, and a third conductive section. The cavity layer has a stacked configuration including a first-conductivity-type or undoped first cladding layer, an undoped first active layer, a second-conductivity-type or undoped second cladding layer, a second-conductivity-type first contact layer, a first-conductivity-type second contact layer, a first-conductivity-type or undoped third cladding layer, an undoped second active layer, and a second-conductivity-type or undoped fourth cladding layer.
    Type: Application
    Filed: April 21, 2009
    Publication date: November 19, 2009
    Applicant: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Rintaro Koda, Tomoyuki Oki, Naoki Jogan
  • Publication number: 20090268774
    Abstract: A Vertical Cavity Surface Emitting Laser capable of decreasing the lowering of the yield due to displacement and separation of a pedestal without enormous increase of the threshold value and more difficult manufacturing process is provided. A base of a mesa spreads over the top face of a lower DBR layer. The base is a non-flat face in which end faces of a plurality of layers are exposed. The non-flat face is generated due to etching unevenness in forming the mesa, and is in a state of a step in which end faces of a low-refractive index layer and a high-refractive index layer included in the lower DBR layer are alternatively exposed. At least one of the layers exposed in the non-flat face in the plurality of low-refractive index layers included in the lower DBR layer is an oxidation inhibition layer.
    Type: Application
    Filed: March 3, 2009
    Publication date: October 29, 2009
    Applicant: Sony Corporation
    Inventors: Tomoyuki Oki, Rintaro Koda, Naoki Jogan, Yuji Masui, Takahiro Arakida
  • Patent number: 7601987
    Abstract: The present invention provides a semiconductor light emitting device realizing a lower detection level of spontaneous emission light by a semiconductor photodetector and an improvement in light detection precision by selectively reflecting spontaneous emission light. The semiconductor light emitting device includes a semiconductor light emitting element for generating light including stimulated emission light having a wavelength ?o and spontaneous emission light having a wavelength band including the wavelength ?o, a multilayer filter having a stack structure in which a low-refractive-index layer having a thickness of ?1/(4×na) (?1<?o and na denote refractive index) and a high-refractive-index layer having a thickness of ?1/(4×nb) (nb>na and nb denote refractive index) are alternately stacked, and a semiconductor photodetector having a light absorption layer that absorbs part of the light passed through the multilayer filter.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: October 13, 2009
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yuji Masui, Tomoyuki Oki
  • Publication number: 20090194837
    Abstract: The present invention provides a semiconductor light receiving element capable of reducing capacity while minimizing increase in travel time of carriers. The semiconductor light receiving element includes a semiconductor stacked structure including a first conductivity type layer, a light absorbing layer, and a second conductivity type layer having a light incidence plane in order. The semiconductor light receiving element has an oxidation layer including a non-oxidation region and an oxidation region in a stacking in-plane direction in the light absorbing layer or between the first conductivity type layer and the light absorbing layer.
    Type: Application
    Filed: January 29, 2009
    Publication date: August 6, 2009
    Applicant: Sony Corporation
    Inventors: Yoshinori Yamauchi, Takahiro Arakida, Rintaro Koda, Norihiko Yamaguchi, Yuji Masui, Tomoyuki Oki
  • Publication number: 20090168825
    Abstract: A light-emitting element assembly includes a support substrate having a first surface, a second surface facing the first surface, a recessed portion, and a conductive material layer formed over the first surface and the inner surface of the recessed portion, and a light-emitting element. The light-emitting element has a laminated structure including a first compound semiconductor layer, a light-emitting portion, and a second compound semiconductor layer, at least the second compound semiconductor layer and the light-emitting portion constituting a mesa structure. The light-emitting element further includes an insulating layer formed, a second electrode, and a first electrode. The mesa structure is placed in the recessed portion so that the conductive material layer and the second electrode are in at least partial contact with each other, and light emitted from the light-emitting portion is emitted from the second surface side of the first compound semiconductor layer.
    Type: Application
    Filed: December 12, 2008
    Publication date: July 2, 2009
    Applicant: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Satoshi Taniguchi, Yuji Masui, Nobuhiro Suzuki, Tomoyuki Oki, Chiyomi Uchiyama, Kayoko Kikuchi
  • Publication number: 20090098675
    Abstract: A method of manufacturing a semiconductor light-emitting device includes steps of forming a vertical cavity structure including a layer to be oxidized on a semiconductor substrate, and then forming a circular groove having a depth which penetrates at least the layer to be oxidized from an upper surface of the vertical cavity structure, thereby forming a columnar mesa whose side face is surrounded by the groove, oxidizing the layer to be oxidized from the side face of the mesa, thereby forming a current confinement layer, and forming a mask layer covering at least a central region of the upper surface of the mesa and exposing at least an edge of the upper surface and the side face of the mesa to an external, and then etching at least the edge of the upper surface and the side face of the mesa by using the mask layer as a mask.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 16, 2009
    Applicant: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Rintaro Koda, Tomoyuki Oki
  • Publication number: 20090032908
    Abstract: A method of manufacturing a semiconductor device capable of largely increasing the yield and a semiconductor device manufactured by using the method is provided. After a semiconductor layer is formed on a substrate, as one group, a plurality of functional portions with at least one parameter value different from each other is formed in the semiconductor layer for every unit chip area. Then, a subject that is changed depending on the parameter value is measured and evaluated and after that, the substrate is divided for every chip area so that a functional portion corresponding with a given criterion as a result of the evaluation is not broken. Thereby, at least one functional portion corresponding with a given criterion can be formed by every chip area by appropriately adjusting each parameter value.
    Type: Application
    Filed: June 5, 2007
    Publication date: February 5, 2009
    Applicant: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Kayoko Kikuchi, Rintaro Koda, Norihiko Yamaguchi
  • Publication number: 20090001386
    Abstract: The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.
    Type: Application
    Filed: April 15, 2008
    Publication date: January 1, 2009
    Applicant: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yuji Masui, Tomoyuki Oki
  • Publication number: 20080279241
    Abstract: A light-emitting element includes a mesa structure in which a first compound semiconductor layer of a first conductivity type, an active layer, and a second compound semiconductor layer of a second conductivity type are disposed in that order, wherein at least one of the first compound semiconductor layer and the second compound semiconductor layer has a current constriction region surrounded by an insulation region extending inward from a sidewall portion of the mesa structure; a wall structure disposed so as to surround the mesa structure; at least one bridge structure connecting the mesa structure and the wall structure, the wall structure and the bridge structure each having the same layer structure as the portion of the mesa structure in which the insulation region is provided; a first electrode; and a second electrode disposed on a top face of the wall structure.
    Type: Application
    Filed: April 3, 2008
    Publication date: November 13, 2008
    Applicant: Sony Corporation
    Inventors: Tomoyuki Oki, Yuji Masui, Yoshinori Yamauchi, Rintaro Koda, Takahiro Arakida
  • Publication number: 20080251794
    Abstract: The present invention provides a semiconductor light emitting device realizing lower detection level of spontaneous emission light by a semiconductor photodetector and improvement in light detection precision by selectively reflecting spontaneous emission light. The semiconductor light emitting device includes a semiconductor light emitting element for generating light including stimulated emission light having a wavelength ?o and spontaneous emission light having a wavelength band including the wavelength ?o, a multilayer filter having a stack structure in which a low-refractive-index layer having a thickness of ?1/(4×na) (?1<?o and na denotes refractive index) and a high-refractive-index layer having a thickness of ?1/(4×nb) (nb>na and nb denotes refractive index) are alternately stacked, and a semiconductor photodetector having a light absorption layer that absorbs a part of light passed through the multilayer filter.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 16, 2008
    Applicant: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yuji Masui, Tomoyuki Oki
  • Publication number: 20080232414
    Abstract: A method for manufacturing a light emitting element includes the steps of (A) forming sequentially a first compound semiconductor layer having a first conduction type, an active layer, and a second compound semiconductor layer having a second conduction type on a substrate, (B) forming a plurality of point-like hole portions in a thickness direction in at least a region of the second compound semiconductor layer located outside a region to be provided with a current confinement region, and (C) forming an insulating region by subjecting a part of the second compound semiconductor layer to an insulation treatment from side walls of the hole portions so as to produce the current confinement region surrounded by the insulating region in the second compound semiconductor layer.
    Type: Application
    Filed: January 14, 2008
    Publication date: September 25, 2008
    Applicant: SONY CORPORATION
    Inventors: Yuji Masui, Takahiro Arakida, Rintaro Koda, Tomoyuki Oki
  • Patent number: 7423294
    Abstract: A semiconductor light-emitting device includes: a semiconductor light-emitting element including a first conductive type semiconductor layer, an active layer including a light-emitting region, and a second conductive type semiconductor layer in this order; a filter having a transmission characteristic in which the transmittance in a direction parallel to the optical axis of induced emission light of light outputted from the semiconductor light-emitting element is higher than the transmittance in a direction different from the optical axis; and a semiconductor photodetector including a light-absorbing layer, the light-absorbing layer absorbing a part of light passing through the filter, wherein the filter and the semiconductor photodetector are laminated in this order on the second conductive type semiconductor layer of the semiconductor light-emitting element, and are formed with the semiconductor light-emitting element as one unit.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: September 9, 2008
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yoshinori Yamauchi, Yuji Masui, Norihiko Yamaguchi