Patents by Inventor Rishabh Mehandru

Rishabh Mehandru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200152750
    Abstract: Disclosed herein are integrated circuit (IC) contact structures, and related devices and methods. For example, in some embodiments, an IC contact structure may include an electrical element, a metal on the electrical element, and a semiconductor material on the metal. The metal may conductively couple the semiconductor material and the electrical element.
    Type: Application
    Filed: March 28, 2017
    Publication date: May 14, 2020
    Applicant: Intel Corporation
    Inventors: Patrick Morrow, Glenn A. Glass, Anand S. Murthy, Rishabh Mehandru
  • Patent number: 10636907
    Abstract: Embodiments of the invention include a non-planar transistor with a strained channel and methods of forming such a transistor. In an embodiment, the non-planar transistor may include a semiconductor substrate. According to an embodiment, a first source/drain (S/D) region and a second S/D region may be formed over the semiconductor substrate and separated from each other by a channel region. A gate stack may be formed over the channel region. In order to increase the amount of strain that may be induced in the channel region, embodiments may include forming a strain enhancement opening in the semiconductor substrate that removes at least a portion of the semiconductor substrate from below the channel region.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 28, 2020
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Stephen M. Cea, Rishabh Mehandru, Patrick Morrow, Patrick H. Keys
  • Publication number: 20200105759
    Abstract: Integrated circuit structures having asymmetric source and drain structures, and methods of fabricating integrated circuit structures having asymmetric source and drain structures, are described. For example, an integrated circuit structure includes a fin, and a gate stack over the fin. A first epitaxial source or drain structure is in a first trench in the fin at a first side of the gate stack. A second epitaxial source or drain structure is in a second trench in the fin at a second side of the gate stack, the second epitaxial source or drain structure deeper into the fin than the first epitaxial source or drain structure.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Anupama BOWONDER, Rishabh MEHANDRU, Mark BOHR, Tahir GHANI
  • Publication number: 20200105753
    Abstract: Gate-all-around integrated circuit structures having high mobility, and methods of fabricating gate-all-around integrated circuit structures having high mobility, are described. For example, an integrated circuit structure includes a silicon nanowire or nanoribbon. An N-type gate stack is around the silicon nanowire or nanoribbon, the N-type gate stack including a compressively stressing gate electrode. A first N-type epitaxial source or drain structure is at a first end of the silicon nanowire or nanoribbon. A second N-type epitaxial source or drain structure is at a second end of the silicon nanowire or nanoribbon. The silicon nanowire or nanoribbon has a <110> plane between the first N-type epitaxial source or drain structure and the second N-type epitaxial source or drain structure.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Roza KOTLYAR, Rishabh MEHANDRU, Stephen CEA, Biswajeet GUHA, Dax CRUM, Tahir GHANI
  • Publication number: 20200105871
    Abstract: Gate-all-around integrated circuit structures having vertically discrete source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having vertically discrete source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the first epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the second epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Dax M. CRUM, Sean MA, Tahir GHANI, Susmita GHOSE, Stephen CEA, Rishabh MEHANDRU
  • Publication number: 20200105891
    Abstract: Embodiments include transistor devices and a method of forming the transistor devices. A transistor device includes a first conductive layer over a substrate, a first transistor having first interconnects in the first conductive layer, and a second conductive layer on an insulating layer that is on the first conductive layer. The transistor device also includes a second transistor having second interconnects in the second conductive layer, and a gate electrode over the substrate, where the gate electrode has a workfunction metal that surrounds the first and second interconnects. The first and second conductive layers may include conductive materials such as an epitaxial (EPI) layer, a metal layer, or a doped-semiconductor layer. The transistor device may further include a dielectric surrounding the interconnects as the dielectric is surrounded with the workfunction metal, and a transition layer disposed between the dielectric and interconnects. The dielectric may include a high-k dielectric material.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Aaron LILAK, Willy RACHMADY, Rishabh MEHANDRU, Gilbert DEWEY, Justin WEBER
  • Publication number: 20200098756
    Abstract: A nanowire transistor structure has a first device region with a first body of semiconductor material having a first cross-sectional shape. A second device region has a second body with a second cross-sectional shape different from the first cross-sectional shape. The first device section is vertically above or below the second device section with the bodies extending horizontally between a source and drain. A first gate structure is wrapped around the first body and a second gate structure is wrapped around the second body. Differences in the geometries of the nanowires can be used to optimize performance in the first device section independently of the second device section.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 26, 2020
    Applicant: INTEL CORPORATION
    Inventors: Aaron Lilak, Stephen Cea, Gilbert Dewey, Willy Rachmady, Roza Kotlyar, Rishabh Mehandru, Sean Ma, Ehren Mannebach, Anh Phan, Cheng-Ying Huang
  • Publication number: 20200098921
    Abstract: Embodiments include transistor devices and a method of forming the transistor devices. A transistor device includes a first dielectric over a substrate, and vias on a first metal layer, where the first metal layer is on an etch stop layer that is on the first dielectric. The transistor device also includes a second dielectric over the first metal layer, vias, and etch stop layer, where the vias include sidewalls, top surfaces, and bottom surfaces, and stacked transistors on the second dielectric and the top surfaces of the vias, where the sidewalls and top surfaces of the vias are positioned within a footprint of the stacked transistors. The stacked transistors include gate electrodes and first and second transistor layers. The first metal layer includes conductive materials including tungsten or cobalt. The footprint may include a bottom surface of the first transistor layer and a bottom surface of the gate electrodes.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Willy RACHMADY, Patrick MORROW, Aaron LILAK, Rishabh MEHANDRU, Cheng-Ying HUANG, Gilbert DEWEY, Kimin JUN, Ryan KEECH, Anh PHAN, Ehren MANNEBACH
  • Patent number: 10600810
    Abstract: Embodiments of the present invention are directed to formation of fins with different active channel heights in a tri-gate or a Fin-FET device. In an embodiment, at least two fins are formed on a front side of the substrate. A gate structure extends over a top surface and a pair of sidewalls of at least a portion of the fins. In an embodiment, the substrate is thinned to expose the bottom surface of the fins. Next, backside etching may be performed on each fin to form active channel regions. The fins may be recessed to different depths, forming active channel regions with differing heights.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 24, 2020
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Patrick Morrow, Stephen M. Cea, Rishabh Mehandru, Cory E. Weber
  • Publication number: 20200066851
    Abstract: Solid assemblies having a composite dielectric spacer and processes for fabricating the solid assemblies are provided. The composite dielectric spacer can include, in some embodiments, a first dielectric layer and a second dielectric layer having a mutual interface. The composite dielectric spacer can separate a contact member from a conductive interconnect member, thus reducing the capacitance between such members with respect to solid assemblies that include one of first dielectric layer or the second dielectric layer. The composite dielectric spacer can permit maintaining the real estate of an interface between the conductive interconnect and a trench contact member that has an interface with a carrier-doped epitaxial layer embodying or constituting a source contact region or a drain contact region of a field effect transistor. The trench contact member can form another interface with the conductive interconnect member, providing a satisfactory contact resistance therebetween.
    Type: Application
    Filed: December 30, 2016
    Publication date: February 27, 2020
    Inventors: Rishabh MEHANDRU, Pratik A. PATEL, Thomas T. TROEGER, Szuya S. LIAO
  • Patent number: 10573715
    Abstract: Embodiments of the present disclosure describe techniques for backside isolation for devices of an integrated circuit (IC) and associated configurations. The IC may include a plurality of devices (e.g., transistors) formed on a semiconductor substrate. The semiconductor substrate may include substrate regions on which one or more devices are formed. Trenches may be disposed between the devices on the semiconductor substrate. Portions of the semiconductor substrate between the substrate regions may be removed to expose the corresponding trenches and form isolation regions. An insulating material may be formed in the isolation regions. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: February 25, 2020
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Harold W. Kennel, Paul B. Fischer, Stephen M. Cea
  • Publication number: 20200052117
    Abstract: Disclosed herein are structures and techniques for device isolation in integrated circuit (IC) assemblies. In some embodiments, an IC assembly may include multiple transistors spaced apart by an isolation region. The isolation region may include a doped semiconductor body whose dopant concentration is greatest at one or more surfaces, or may include a material that is lattice-mismatched with material of the transistors, for example.
    Type: Application
    Filed: May 15, 2017
    Publication date: February 13, 2020
    Applicant: Intel Corporation
    Inventors: Rishabh Mehandru, Stephen M. Cea, Tahir Ghani
  • Publication number: 20200035560
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Application
    Filed: August 25, 2017
    Publication date: January 30, 2020
    Applicant: Intel Corporation
    Inventors: Bruce BLOCK, Valluri R. RAO, Patrick MORROW, Rishabh MEHANDRU, Doug INGERLY, Kimin JUN, Kevin O'BRIEN, Patrick MORROW, Szyua S. LIAO
  • Patent number: 10546873
    Abstract: Embodiments of the present disclosure describe an integrated circuit that may include a first transistor on a first side of a semiconductor substrate and a second transistor on a second side of the semiconductor substrate, wherein the second side is opposite and parallel to the first side. In embodiments, the integrated circuit may further include a first capacitor positioned on the first side of the semiconductor substrate and coupled to the first transistor to form a first memory cell, and a second capacitor positioned on the second side of the semiconductor substrate and coupled to the second transistor to form a second memory cell.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: January 28, 2020
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Aaron D. Lilak
  • Publication number: 20200013905
    Abstract: Semiconductor nanowire devices having cavity spacers and methods of fabricating cavity spacers for semiconductor nanowire devices are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate, each of the nanowires including a discrete channel region. A common gate electrode stack surrounds each of the discrete channel regions of the plurality of vertically stacked nanowires. A pair of dielectric spacers is on either side of the common gate electrode stack, each of the pair of dielectric spacers including a continuous material disposed along a sidewall of the common gate electrode and surrounding a discrete portion of each of the vertically stacked nanowires. A pair of source and drain regions is on either side of the pair of dielectric spacers.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 9, 2020
    Inventors: Rishabh MEHANDRU, Szuya S. LIAO, Stephen M. CEA
  • Patent number: 10529827
    Abstract: Embodiments of the invention include vertically oriented long channel transistors and methods of forming such transistors. In one embodiment, a method of forming such a transistor may include forming a fin on a semiconductor substrate. Embodiments may also include forming a spacer over an upper portion of the fin and a lower portion of the fin not covered by the spacer may be exposed. Embodiments may also include forming a gate dielectric layer over the exposed portion of the fin. A gate electrode may then be deposited, according to an embodiment. Embodiments may include exposing a top portion of the fin and forming a first source/drain (S/D) region in the top portion of the fin. The second S/D region may be formed by removing the semiconductor substrate to expose a bottom portion of the fin and forming the second S/D region in the bottom portion of the fin.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Patrick Morrow, Paul B. Fischer, Aaron D. Lilak, Stephen M. Cea
  • Publication number: 20200006546
    Abstract: A semiconductor device includes a semiconductor body that includes a surface and a first region and a second region formed in the semiconductor body, where a channel region is located between the first region and the second region, and where the second region includes a sub-region that includes a blanket dopant; a first conductive contact on the surface of the semiconductor body above the first region; a semiconductor-on-insulator (SOI) at a bottom of the first region; and a pocket channel dopant (PCD) formed in the channel, where a first portion of the PCD is adjacent to a first portion of the SOI; and a second conductive contact on a bottom portion of the sub-region, where a first portion of the second conductive contact is adjacent to a second portion of the SOI, and a second portion of the second conductive contact is adjacent to a second portion of the PCD.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Rishabh MEHANDRU, Tahir GHANI, Stephen CEA
  • Publication number: 20200006488
    Abstract: Integrated circuit structures including a buried etch-stop layer to help control transistor source/drain depth are provided herein. The buried etch-stop layer addresses the issue of the source/drain etch (or epi-undercut (EUC) etch) going below the bottom of the active height of the channel region, as such an issue can result in un-controlled sub-fin leakage that causes power consumption degradation and other undesired performance issues. The buried etch-stop layer is formed below the channel material, such as in the epitaxial stack that includes the channel material, and acts to slow the removal of material after the channel material has been removed when etching to form the source/drain trenches. In other words, the buried etch-stop layer includes different material from the channel material that can be etched, for at least one given etchant, at a relatively slower rate than the channel material to help control the source/drain trench depth.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Applicant: INTEL CORPORATION
    Inventors: RISHABH MEHANDRU, BISWAJEET GUHA, ANUPAMA BOWONDER, ANAND S. MURTHY, TAHIR GHANI, STEPHEN M. CEA
  • Publication number: 20200006559
    Abstract: Isolation schemes for gate-all-around (GAA) transistor devices are provided herein. In some cases, the isolation schemes include changing the semiconductor nanowires/nanoribbons in a targeted channel region between active or functional transistor devices to electrically isolate those active devices. The targeted channel region is referred to herein as a dummy channel region, as it is not used as an actual channel region for an active or functional transistor device. The semiconductor nanowires/nanoribbons in the dummy channel region can be changed by converting them to an electrical insulator and/or by adding dopant that is opposite in type relative to surrounding source/drain material (to create a p-n junction). The isolation schemes described herein enable neighboring active devices to retain strain in the nanowires/nanoribbons of their channel regions, thereby improving device performance.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: INTEL CORPORATION
    Inventors: RISHABH MEHANDRU, STEPHEN M. CEA, BISWAJEET GUHA, TAHIR GHANI, WILLIAM HSU
  • Publication number: 20200006573
    Abstract: Double gated thin film transistors are described. In an example, an integrated circuit structure includes an insulator layer above a substrate. A first gate electrode is on the insulator layer, the first gate electrode having a non-planar feature. A first gate dielectric is on and conformal with the non-planar feature of the first gate electrode. A channel material layer is on and conformal with the first gate dielectric. A second gate dielectric is on and conformal with the channel material layer. A second gate electrode is on and conformal with the second gate dielectric. A first source or drain region is coupled to the channel material layer at a first side of the first gate dielectric. A second source or drain region is coupled to the channel material layer at a second side of the first gate dielectric.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Aaron LILAK, Van H. LE, Abhishek A. SHARMA, Tahir GHANI, Rishabh MEHANDRU, Gilbert DEWEY, Willy RACHMADY