Patents by Inventor Rishabh Mehandru

Rishabh Mehandru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11605556
    Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of non-planar transistors. An insulation structure is provided between channel, source, and drain regions of neighboring fins. The insulation structure is formed during back side processing, wherein at least a first portion of the isolation material between adjacent fins is recessed to expose a sub-channel portion of the semiconductor fins. A spacer material is then deposited at least on the exposed opposing sidewalls of the exposed sub-channel portion of each fin. The isolation material is then further recessed to form an air gap between gate, source, and drain regions of neighboring fins. The air gap electrically isolates the source/drain regions of one fin from the source/drain regions of an adjacent fin, and likewise isolates the gate region of the one fin from the gate region of the adjacent fin. The air gap can be filled with a dielectric material.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Patrick Morrow
  • Publication number: 20230074199
    Abstract: Gate-all-around integrated circuit structures having vertically discrete source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having vertically discrete source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the first epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the second epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Dax M. CRUM, Sean MA, Tahir GHANI, Susmita GHOSE, Stephen CEA, Rishabh MEHANDRU
  • Patent number: 11600696
    Abstract: Embodiments disclosed herein include transistor devices and methods of forming such transistor devices. In an embodiment a transistor comprises a substrate, and a fin that extends up from the substrate. In an embodiment, the fin comprises a source region, a drain region, and a channel region between the source region and the drain region. In an embodiment, the transistor further comprises and a cavity in the fin, where the cavity is below the channel region. In an embodiment, the transistor further comprises a gate stack over the fin.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 7, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Stephen Cea, Anupama Bowonder, Juhyung Nam, Willy Rachmady
  • Publication number: 20230068314
    Abstract: Wrap-around contact structures for semiconductor nanowires and nanoribbons, and methods of fabricating wrap-around contact structures for semiconductor nanowires and nanoribbons, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above a first portion of a semiconductor sub-fin. A gate structure surrounds a channel portion of the semiconductor nanowire. A source or drain region is at a first side of the gate structure, the source or drain region including an epitaxial structure on a second portion of the semiconductor sub-fin, the epitaxial structure having substantially vertical sidewalls in alignment with the second portion of the semiconductor sub-fin. A conductive contact structure is along sidewalls of the second portion of the semiconductor sub-fin and along the substantially vertical sidewalls of the epitaxial structure.
    Type: Application
    Filed: November 9, 2022
    Publication date: March 2, 2023
    Inventors: Rishabh MEHANDRU, Tahir GHANI, Stephen CEA, Biswajeet GUHA
  • Publication number: 20230046755
    Abstract: Vertical integration schemes and circuit elements architectures for area scaling of semiconductor devices are described. In an example, an inverter structure includes a semiconductor fin separated vertically into an upper region and a lower region. A first plurality of gate structures is included for controlling the upper region of the semiconductor fin. A second plurality of gate structures is included for controlling the lower region of the semiconductor fin. The second plurality of gate structures has a conductivity type opposite the conductivity type of the first plurality of gate structures.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 16, 2023
    Inventors: Rishabh MEHANDRU, Patrick MORROW, Ranjith KUMAR, Cory E. WEBER, Seiyon KIM, Stephen M. CEA, Tahir GHANI
  • Patent number: 11573798
    Abstract: Disclosed herein are stacked transistors with different gate lengths in different device strata, as well as related methods and devices. In some embodiments, an integrated circuit structure may include stacked strata of transistors, with two different device strata having different gate lengths.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Gilbert W. Dewey, Willy Rachmady, Rishabh Mehandru, Ehren Mannebach, Cheng-Ying Huang, Anh Phan, Patrick Morrow
  • Patent number: 11557676
    Abstract: Techniques and mechanisms to impose stress on a transistor which includes a channel region and a source or drain region each in a fin structure. In an embodiment, a gate structure of the transistor extends over the fin structure, wherein a first spacer portion is at a sidewall of the gate structure and a second spacer portion adjoins the first spacer portion. Either or both of two features are present at or under respective bottom edges of the spacer portions. One of the features includes a line of discontinuity on the fin structure. The other feature includes a concentration of a dopant in the second spacer portion being greater than a concentration of the dopant in the source or drain region. In another embodiment, the fin structure is disposed on a buffer layer, wherein stress on the channel region is imposed at least in part with the buffer layer.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 17, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Stephen M. Cea, Tahir Ghani, Anand S. Murthy
  • Patent number: 11552104
    Abstract: Disclosed herein are stacked transistors with dielectric between channel materials, as well as related methods and devices. In some embodiments, an integrated circuit structure may include stacked strata of transistors, wherein a dielectric material is between channel materials of adjacent strata, and the dielectric material is surrounded by a gate dielectric.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: January 10, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Gilbert W. Dewey, Willy Rachmady, Rishabh Mehandru, Ehren Mannebach, Cheng-Ying Huang, Anh Phan, Patrick Morrow, Kimin Jun
  • Publication number: 20220415708
    Abstract: Integrated circuitry comprising transistor structures with a source/drain etch stop layer to limit the depth of source and drain material relative to a channel of the transistor. A portion of a channel material layer may be etched in preparation for source and drain materials. The etch may be stopped at an etch stop layer buried between a channel material layer and an underlying planar substrate layer. The etch stop layer may have a different composition than the channel layer while retaining crystallinity of the channel layer. The source and drain etch stop layer may provide adequate etch selectivity to ensure a source and drain etch process does not punch through the etch stop layer. Following the etch process, source and drain materials may be formed, for example with an epitaxial growth process. The source and drain etch stop layer may be, for example, primarily silicon and carbon.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Rishabh Mehandru, Stephen Cea, Tahir Ghani, Patrick Keys, Aaron Lilak, Anand Murthy, Cory Weber
  • Patent number: 11538806
    Abstract: Gate-all-around integrated circuit structures having high mobility, and methods of fabricating gate-all-around integrated circuit structures having high mobility, are described. For example, an integrated circuit structure includes a silicon nanowire or nanoribbon. An N-type gate stack is around the silicon nanowire or nanoribbon, the N-type gate stack including a compressively stressing gate electrode. A first N-type epitaxial source or drain structure is at a first end of the silicon nanowire or nanoribbon. A second N-type epitaxial source or drain structure is at a second end of the silicon nanowire or nanoribbon. The silicon nanowire or nanoribbon has a <110> plane between the first N-type epitaxial source or drain structure and the second N-type epitaxial source or drain structure.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 27, 2022
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Rishabh Mehandru, Stephen Cea, Biswajeet Guha, Dax Crum, Tahir Ghani
  • Patent number: 11527612
    Abstract: Gate-all-around integrated circuit structures having vertically discrete source or drain structures, and methods of fabricating gate-all-around integrated circuit structures having vertically discrete source or drain structures, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the first epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires, the second epitaxial source or drain structure including vertically discrete portions aligned with the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: December 13, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Biswajeet Guha, Dax M. Crum, Sean Ma, Tahir Ghani, Susmita Ghose, Stephen Cea, Rishabh Mehandru
  • Patent number: 11527613
    Abstract: An apparatus is provided which comprises: a plurality of nanowire transistors stacked vertically, wherein each nanowire transistor of the plurality of nanowire transistors comprises a corresponding nanowire of a plurality of nanowires; and a gate stack, wherein the gate stack fully encircles at least a section of each nanowire of the plurality of nanowires.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: December 13, 2022
    Assignee: INTEL CORPORATION
    Inventors: Aaron Lilak, Patrick Keys, Sean Ma, Stephen Cea, Rishabh Mehandru
  • Patent number: 11527640
    Abstract: Wrap-around contact structures for semiconductor nanowires and nanoribbons, and methods of fabricating wrap-around contact structures for semiconductor nanowires and nanoribbons, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above a first portion of a semiconductor sub-fin. A gate structure surrounds a channel portion of the semiconductor nanowire. A source or drain region is at a first side of the gate structure, the source or drain region including an epitaxial structure on a second portion of the semiconductor sub-fin, the epitaxial structure having substantially vertical sidewalls in alignment with the second portion of the semiconductor sub-fin. A conductive contact structure is along sidewalls of the second portion of the semiconductor sub-fin and along the substantially vertical sidewalls of the epitaxial structure.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 13, 2022
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Tahir Ghani, Stephen Cea, Biswajeet Guha
  • Patent number: 11522072
    Abstract: Vertical integration schemes and circuit elements architectures for area scaling of semiconductor devices are described. In an example, an inverter structure includes a semiconductor fin separated vertically into an upper region and a lower region. A first plurality of gate structures is included for controlling the upper region of the semiconductor fin. A second plurality of gate structures is included for controlling the lower region of the semiconductor fin. The second plurality of gate structures has a conductivity type opposite the conductivity type of the first plurality of gate structures.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: December 6, 2022
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Patrick Morrow, Ranjith Kumar, Cory E. Weber, Seiyon Kim, Stephen M. Cea, Tahir Ghani
  • Patent number: 11515420
    Abstract: An apparatus is provided which comprises: a first region over a substrate, wherein the first region comprises a first semiconductor material having a L-valley transport energy band structure, a second region in contact with the first region at a junction, wherein the second region comprises a second semiconductor material having a X-valley transport energy band structure, wherein a <111> crystal direction of one or more crystals of the first and second semiconductor materials are substantially orthogonal to the junction, and a metal adjacent to the second region, the metal conductively coupled to the first region through the junction. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 29, 2022
    Assignee: INTEL CORPORATION
    Inventors: Dax M. Crum, Cory E. Weber, Rishabh Mehandru, Harold Kennel, Benjamin Chu-Kung
  • Publication number: 20220352029
    Abstract: In an embodiment of the present disclosure, a device structure includes a fin structure, a gate on the fin structure, and a source and a drain on the fin structure, where the gate is between the source and the drain. The device structure further includes an insulator layer having a first insulator layer portion adjacent to a sidewall of the source, a second insulator layer portion adjacent to a sidewall of the drain, and a third insulator layer portion therebetween adjacent to a sidewall of the gate, and two or more stressor materials adjacent to the insulator layer. The stressor materials can be tensile or compressively stressed and may strain a channel under the gate.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Applicant: Intel Corporation
    Inventors: Aaron D. Lilak, Christopher J. Jezewski, Willy Rachmady, Rishabh Mehandru, Gilbert Dewey, Anh Phan
  • Patent number: 11482621
    Abstract: Embodiments include transistor devices and a method of forming the transistor devices. A transistor device includes a first dielectric over a substrate, and vias on a first metal layer, where the first metal layer is on an etch stop layer that is on the first dielectric. The transistor device also includes a second dielectric over the first metal layer, vias, and etch stop layer, where the vias include sidewalls, top surfaces, and bottom surfaces, and stacked transistors on the second dielectric and the top surfaces of the vias, where the sidewalls and top surfaces of the vias are positioned within a footprint of the stacked transistors. The stacked transistors include gate electrodes and first and second transistor layers. The first metal layer includes conductive materials including tungsten or cobalt. The footprint may include a bottom surface of the first transistor layer and a bottom surface of the gate electrodes.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 25, 2022
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Patrick Morrow, Aaron Lilak, Rishabh Mehandru, Cheng-Ying Huang, Gilbert Dewey, Kimin Jun, Ryan Keech, Anh Phan, Ehren Mannebach
  • Publication number: 20220336284
    Abstract: Stacked finFET structures including a fin having at least a first layer of semiconductor material stacked over or under a second layer of semiconductor material. The first and second layers may include a Group IV semiconductor material layer and a Group III-V semiconductor material layer, for example. A stacked finFET may include an N-type finFET stacked over or under a P-type finFET, the two finFETs may have channel portions within the different semiconductor material layers. Channel portions of the first and second layers of semiconductor material may be coupled to separate gate electrodes that are vertically aligned. Channel portions of the first and second layers of semiconductor material may be vertically separated by subfin portions of the first and second layers. Different layers of dielectric material adjacent to the subfin portions may improve electrical isolation between the channel portions, for example as a source of fixed charge or impurity dopants.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 20, 2022
    Applicant: Intel Corporation
    Inventors: Aaron Lilak, Sean Ma, Justin R. Weber, Rishabh Mehandru, Stephen M. Cea, Patrick Morrow, Patrick H. Keys
  • Patent number: 11462536
    Abstract: Integrated circuit structures having asymmetric source and drain structures, and methods of fabricating integrated circuit structures having asymmetric source and drain structures, are described. For example, an integrated circuit structure includes a fin, and a gate stack over the fin. A first epitaxial source or drain structure is in a first trench in the fin at a first side of the gate stack. A second epitaxial source or drain structure is in a second trench in the fin at a second side of the gate stack, the second epitaxial source or drain structure deeper into the fin than the first epitaxial source or drain structure.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Anupama Bowonder, Rishabh Mehandru, Mark Bohr, Tahir Ghani
  • Publication number: 20220310605
    Abstract: Multiple non-silicon semiconductor material layers may be stacked within a fin structure. The multiple non-silicon semiconductor material layers may include one or more layers that are suitable for P-type transistors. The multiple non-silicon semiconductor material layers may further include one or more one or more layers that are suited for N-type transistors. The multiple non-silicon semiconductor material layers may further include one or more intervening layers separating the N-type from the P-type layers. The intervening layers may be at least partially sacrificial, for example to allow one or more of a gate, source, or drain to wrap completely around a channel region of one or more of the N-type and P-type transistors.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Patrick Morrow, Ravi Pillarisetty, Rishabh Mehandru, Cheng-ying Huang, Willy Rachmady, Aaron Lilak