Patents by Inventor Rishikesh Krishnan

Rishikesh Krishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120196424
    Abstract: A method includes providing an SOI substrate including a layer of silicon disposed atop a layer of an oxide, the layer of an oxide being disposed atop the semiconductor substrate; forming a deep trench having a sidewall extending through the layer of silicon and the layer of an oxide and into the substrate; depositing a continuous spacer on the sidewall to cover the layer of silicon, the layer of an oxide and a part of the substrate; depositing a first conformal layer of a conductive material throughout the inside of the deep trench; creating a silicide within the deep trench in regions extending through the sidewall into an uncovered part of the substrate; removing the first conformal layer from the continuous spacer; removing the continuous spacer; depositing a layer of a high k dielectric material throughout the inside of the deep trench, and depositing a second conformal layer of a conductive material onto the layer of a high-k dielectric material.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rishikesh Krishnan, Joseph F. Shepard, JR., Michael P. Chudzik, Christian Lavoie, Dong-Ick Lee, Oh-Jung Kwon, Unoh Kwon, Youngjin Choi
  • Publication number: 20120187453
    Abstract: A semiconductor structure is provided that includes a substrate having disposed thereon a silicon layer and a silicon germanium layer. An insulator is disposed between the silicon layer and the silicon germanium layer. An optional silicon nitride film is disposed conformally on the silicon layer and the silicon germanium layer, and a SiO2layer disposed on the optional silicon nitride film or on the silicon layer and the silicon germanium layer, when the optional silicon nitride film is not present.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph F. Shepard, JR., Siddarth A. Krishnan, Rishikesh Krishnan, Michael P. Chudzik
  • Publication number: 20120181630
    Abstract: Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Michael P. Chudzik, Rishikesh Krishnan, Siddarth A. Krishnan, Unoh Kwon, Keith Kwong Hon Wong
  • Publication number: 20110298089
    Abstract: An improved trench capacitor and method of fabrication are disclosed. The trench capacitor utilizes a rare-earth oxide layer to reduce depletion effects, thereby improving performance of the trench capacitor.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rishikesh Krishnan, Michael P. Chudzik, Siddarth A. Krishnan
  • Publication number: 20110300721
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Daniel Gealy
  • Publication number: 20110254129
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: June 28, 2011
    Publication date: October 20, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Patent number: 8012532
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Dan Gealy
  • Publication number: 20110169141
    Abstract: A method of creating insulating layers on different semiconductor materials includes providing a substrate having disposed thereon a first material and a second material, the second material having a chemical composition different from the first material; non-epitaxially depositing a continuous sacrificial layer of approximately constant thickness onto the first material and the second material, and then converting the sacrificial layer into a layer consisting essentially of SiO2 without oxidizing more than 10 angstroms into the second material. A structure includes a silicon nitride film disposed conformally on a silicon layer and a silicon germanium layer; a SiO2 layer is disposed on the silicon nitride film.
    Type: Application
    Filed: January 11, 2010
    Publication date: July 14, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph F. Shepard, JR., Siddarth A. Krishnan, Rishikesh Krishnan, Michael P. Chudzik
  • Patent number: 7968969
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Publication number: 20100315760
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jeff Hully, Chris Carlson
  • Publication number: 20100316793
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jef Hall, Chris Carlson
  • Publication number: 20090273058
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Patent number: 7560392
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: July 14, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Publication number: 20090155486
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Dan Gealy
  • Publication number: 20070264838
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: May 10, 2006
    Publication date: November 15, 2007
    Applicant: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein