Patents by Inventor Robert A. Rosen

Robert A. Rosen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11564839
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method for vergence matching includes calculating vergence of a wave after refraction on a surface of an IOL and, based on an estimated curvature, converting an initial phase map into a vergence-matched phase map, such that the initial phase map follows the curved vergence of the wavefront.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: January 31, 2023
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Patent number: 11534291
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: December 27, 2022
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Patent number: 11529230
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL) that has a non-zero residual spherical error that requires an estimated diffractive power addition in the IOL. In some embodiments, a plurality of laser pulses are applied to the IOL, the laser pulses being configured to produce, by refractive index writing on the IOL, the estimated diffractive power addition to correct for the residual spherical error.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: December 20, 2022
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Patent number: 11523897
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as haloes and glare. Exemplary ophthalmic lenses may include a central zone with a first set of two echelettes arranged around the optical axis, the first set having a profile in r-squared space. A middle zone includes a second set of two echelettes arranged around the optical axis, the second set having a profile in r-squared space that is different than the profile of the first set. A peripheral zone includes a third set of two echelettes arranged around the optical axis, the third set having a profile in r-squared space that is different than the profile of the first set and the profile of the second set, the third set being repeated in series on the peripheral zone.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: December 13, 2022
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber
  • Patent number: 11517423
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 6, 2022
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 11504226
    Abstract: Intraocular lenses for reducing the risk of posterior capsule opacification (PCO) are described herein. PCO can be reduced with an IOL design that increases the pressure at the posterior capsular bend, for example, by including a sharper edge design, an enlarged optical zone, and/or an increased vault height. An example ophthalmic lens can include an optic (200) including an anterior surface (202) defining an anterior side of the optic, a posterior surface (204) defining a posterior side of the optic, and an edge (210) arranged between the anterior and posterior surfaces. The edge and the posterior surface can form an angle, where the angle is less than about 90 degrees. Additionally, the ophthalmic lens can have an increased vault height. At least one of the angle or the increased vault height be configured to increase pressure on a capsular bend in a subject's eye.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: November 22, 2022
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Robin Zonneveld, Sieger Meijer, Bram Koopman, Bart Cannegieter, Theophilus Bogaert, Aixa Alarcon Heredia, Mihai State
  • Publication number: 20220354362
    Abstract: A ring halometer system configured to quantify dysphotopsias in a patient. The system includes a white screen and a first light source configured to emit a glare source from the white screen. The glare source is configured to form a veil of light visible to the patient when the glare source interacts with an optical surface of the eye of the patient. The system also includes a second light source configured to project a light ring with varying luminance concentric with the glare light source on the white screen, and a controller coupled to the second light source configured to adjust a size of the light ring. The system may also include an electronic device configured to determine a level of bothersomeness of the dysphotopsias experienced by the patient based on the size of the light ring.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 10, 2022
    Inventors: Miguel Faria Ribeiro, Mark Jenkins Sanchez, Aixa Alarcon Heredia, Robert Rosen
  • Publication number: 20220244440
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs). Exemplary ophthalmic lenses can include a plurality of echelettes arranged around the optical axis, having a profile in r-squared space. The echelettes may be non-repeating over the optical zone.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Publication number: 20220211488
    Abstract: Apparatuses, systems, and methods directed to reducing negative dysphotopsia in an individual's eye. Such apparatuses, systems, and methods may include determining an angle kappa of an individual's eye. Such apparatuses, systems, and methods further include tilt adjustable intraocular lenses.
    Type: Application
    Filed: December 22, 2021
    Publication date: July 7, 2022
    Inventors: Aixa Alarcon Heredia, Robert Rosen, Mihai State, Patricia A. Piers
  • Publication number: 20220208379
    Abstract: A Bayesian model for predicting spectacle independence of one or more IOLs based on pre-clinical data (e.g., visual acuity value for one or more defocus values) of an IOL. The Bayesian model is trained to assign appropriate weights for different combinations of defocus values.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventor: Robert Rosén
  • Publication number: 20220171214
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as straylight, haloes and glare, in diffractive lenses. Exemplary ophthalmic lenses can include a diffractive profile that distributes light among a near focal length, a far focal length, and one or more intermediate focal length. The diffractive profile provides for minimized or zero step heights between one or more pairs of diffractive zones for reducing visual artifacts.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Patent number: 11331181
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce optical errors at the location on the peripheral retina.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: May 17, 2022
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 11327210
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs). Exemplary ophthalmic lenses can include a plurality of echelettes arranged around the optical axis, having a profile in r-squared space. The echelettes may be non-repeating over the optical zone.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: May 10, 2022
    Assignee: AMO Groningen B.V.
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Patent number: 11282605
    Abstract: A Bayesian model for predicting spectacle independence of one or more IOLs based on pre-clinical data (e.g., visual acuity value for one or more defocus values) of an IOL. The Bayesian model is trained to assign appropriate weights for different combinations of defocus values.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: March 22, 2022
    Assignee: AMO Groningen B.V.
    Inventor: Robert Rosén
  • Patent number: 11262598
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as straylight, haloes and glare, in diffractive lenses. Exemplary ophthalmic lenses can include a diffractive profile that distributes light among a near focal length, a far focal length, and one or more intermediate focal length. The diffractive profile provides for minimized or zero step heights between one or more pairs of diffractive zones for reducing visual artifacts.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: March 1, 2022
    Assignee: AMO Groningen, B.V.
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Publication number: 20220047382
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Publication number: 20220043281
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as haloes and glare, in extended range of vision lenses. Exemplary ophthalmic lenses can include a central zone with a first set of three echelettes arranged around the optical axis, the first set having a profile in r-squared space. An intermediate zone includes a second set of three echelettes arranged around the optical axis, the second set having a profile in r-squared space that is different than the profile of the first set. A peripheral zone includes a third set of three echelettes arranged around the optical axis, the third set having a profile in r-squared space that is different than the profile of the first set and the profile of the second set.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Publication number: 20210386539
    Abstract: Intraocular lenses for reducing negative dysphotpsia (ND) are described herein. An example ophthalmic lens can include an optic (200) with a central optical zone (225) disposed about the optical axis (OA) and an attenuation optical zone (220) disposed about the central optical zone (225), wherein the attenuation optical zone (220) is contiguous with the central optical zone (225), and wherein optical power of the ophthalmic lens is gradually reduced within the attenuation optical zone (220).
    Type: Application
    Filed: October 21, 2019
    Publication date: December 16, 2021
    Inventors: Robert Rosen, Robin Zonneveld, Sieger Meijer, Aixa Alarcon Heredia, Mihai State, Carmen Canovas Vidal
  • Publication number: 20210378816
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 9, 2021
    Inventors: Robert Rosén, Theophilus Bogaert
  • Patent number: 11160651
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 2, 2021
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri