Patents by Inventor Robert A. Rosen

Robert A. Rosen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190164647
    Abstract: A Bayesian model for predicting spectacle independence of one or more IOLs based on pre-clinical data (e.g., visual acuity value for one or more defocus values) of an IOL. The Bayesian model is trained to assign appropriate weights for different combinations of defocus values.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 30, 2019
    Inventor: Robert Rosén
  • Publication number: 20190110890
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce optical errors at the location on the peripheral retina.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 18, 2019
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Publication number: 20190076241
    Abstract: A multi-piece IOL assembly is provided that includes a platform and an optic. The platform has an inner periphery surrounding an inner zone of the platform. The optic has an optical zone, an outer periphery and a retention mechanism disposed on the outer periphery. The optic is configured to be disposed in the inner zone of the platform and to extend to a location between the inner periphery and the outer periphery of the platform to be secured to the platform at the location. The platform can be secured to an inner periphery of the eye or can be formed into a natural lens by cutting the lens using a laser or other energy source.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Aixa Alarcon Heredia, Bram Koopman, Marrie Van Der Mooren, Robert Rosén, Jacolien Graver, Selma Boersma, Luuk Franssen, John Van Den Berg
  • Publication number: 20190076240
    Abstract: Intraocular lenses with a base optical power and a customized add power. The add power is customized based on at least one of ocular biometry of an individual, position of the intraocular lens in the eye and a preferred reading distance.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 14, 2019
    Inventors: Carmen Canovas Vidal, Robert Rosén, Marrie Van Der Mooren, Patricia A. Piers
  • Publication number: 20190004331
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as straylight, haloes and glare, in diffractive lenses. Exemplary ophthalmic lenses can include a diffractive profile that distributes light among a near focal length, a far focal length, and one or more intermediate focal length. The diffractive profile provides for minimized or zero step heights between one or more pairs of diffractive zones for reducing visual artifacts.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 3, 2019
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Publication number: 20190004221
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs). Exemplary ophthalmic lenses can include a plurality of echelettes arranged around the optical axis, having a profile in r-squared space. The echelettes may be non-repeating over the optical zone.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 3, 2019
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Publication number: 20190004335
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as haloes and glare, in extended range of vision lenses. Exemplary ophthalmic lenses can include a central zone with a first set of three echelettes arranged around the optical axis, the first set having a profile in r-squared space. An intermediate zone includes a second set of three echelettes arranged around the optical axis, the second set having a profile in r-squared space that is different than the profile of the first set. A peripheral zone includes a third set of three echelettes arranged around the optical axis, the third set having a profile in r-squared space that is different than the profile of the first set and the profile of the second set.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 3, 2019
    Inventors: Hendrik A. Weeber, Robert Rosen
  • Publication number: 20180368972
    Abstract: Apparatuses, systems and methods for providing improved ophthalmic lenses, particularly intraocular lenses (IOLs), include features for reducing dysphotopsia effects, such as haloes and glare. Exemplary ophthalmic lenses may include a central zone with a first set of two echelettes arranged around the optical axis, the first set having a profile in r-squared space. A middle zone includes a second set of two echelettes arranged around the optical axis, the second set having a profile in r-squared space that is different than the profile of the first set. A peripheral zone includes a third set of two echelettes arranged around the optical axis, the third set having a profile in r-squared space that is different than the profile of the first set and the profile of the second set, the third set being repeated in series on the peripheral zone.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 27, 2018
    Inventors: Robert Rosen, Hendrik A. Weeber
  • Patent number: 10143548
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce optical errors at the location on the peripheral retina.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: December 4, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10136990
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 27, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Publication number: 20180318065
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 8, 2018
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Publication number: 20180318069
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a dual optic intraocular lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface to reduce optical errors in an image produced at a peripheral retinal location by light incident at oblique angles.
    Type: Application
    Filed: July 9, 2018
    Publication date: November 8, 2018
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10088384
    Abstract: A system and method of characterizing through-focus visual performance of an IOL using metrics based on an area under the modulation transfer function for different spatial frequencies at different defocus positions of the IOL. Also disclosed is a system and method of characterizing through-focus visual performance of an IOL using a metric based on an area under a cross-correlation coefficient for an image of a target acquired by the IOL at different defocus positions of the IOL.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 2, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Aixa Alarcon Heredia, Carmen Canovas Vidal, Robert Rosén, Hendrik A. Weeber, Patricia Ann Piers
  • Publication number: 20180221140
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Application
    Filed: January 15, 2018
    Publication date: August 9, 2018
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Patent number: 10016270
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a dual optic intraocular lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface to reduce optical errors in an image produced at a peripheral retinal location by light incident at oblique angles.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: July 10, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10010407
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: July 3, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A Weeber, Carmen Canovas Vidal, Marrie H Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Publication number: 20180153681
    Abstract: A system, method, and apparatus are provided for designing and evaluating intraocular lenses for a large field of view that generate a first eye model from data that includes constant and customized values, including customized values of a first intraocular lens. A simulated outcome is provided by the first intraocular lens in at least one modeled eye. A second eye model is generated wherein a second intraocular lens is substituted for the first intraocular lens. An outcome provided by the second intraocular lens is simulated in at least one modeled eye. Outcomes of the first and second intraocular lenses are compared.
    Type: Application
    Filed: October 24, 2017
    Publication date: June 7, 2018
    Inventors: Robert Rosen, Mihai State, Carmen Canovas Vidal, Aixa Alarcon Heredia, Marrie H. Van Der Mooren
  • Publication number: 20180153683
    Abstract: An apparatus, system or method for providing an intraocular lens that reduces pupillary reflections. The apparatus or system may include a set of intraocular lenses configured to provide an optical power between about 5 Diopter and about 34 Diopter at a predefined increment there between, each lens having a shape factor configured such that the magnitude of intensity of light reflected from any intraocular lens is within two orders of magnitude of the intensity of light reflected from any other lens in the set. The method for designing an intraocular lens may include obtaining physical or optical characteristics of a patient's eye and then determining a shape factor of an intraocular lens by selecting a value for a radius of curvature of a surface of the intraocular lens to reduce a peak intensity of reflected ambient light over a range of clinical optical powers.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 7, 2018
    Inventors: Robert Rosén, Mihai State
  • Publication number: 20180073958
    Abstract: A system and method of characterizing through-focus visual performance of an IOL using metrics based on an area under the modulation transfer function for different spatial frequencies at different defocus positions of the IOL. Also disclosed is a system and method of characterizing through-focus visual performance of an IOL using a metric based on an area under a cross-correlation coefficient for an image of a target acquired by the IOL at different defocus positions of the IOL.
    Type: Application
    Filed: November 17, 2017
    Publication date: March 15, 2018
    Inventors: Aixa ALARCON HEREDIA, Carmen CANOVAS VIDAL, Robert ROSÉN, Hendrik A. WEEBER, Patricia Ann PIERS
  • Patent number: 9867693
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: January 16, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri