Patents by Inventor Robert A. Rosen

Robert A. Rosen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200315783
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes vergence matching for an intraocular lens (IOL) having an optical profile induced by refractive index writing.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315782
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method of treating an ocular disease of a subject having an implanted intraocular lens (IOL) includes determining visual needs of a subject that are associated with an ocular disease of the subject determining a pattern of a plurality of pulses of radiation to apply, by refractive index writing, and applying the plurality of pulses of radiation to the one or more selected areas of the IOL.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315849
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes determining a deviation in position of at least one optical element from a reference line corresponding to alignment of the apex of the cornea, center of the pupil, center of the IOL, and fovea, and/or determining a tilt of at least one of the optical elements relative to the reference line. The method can further include applying a plurality of focused laser pulses to a selected area of the implanted IOL to produce, through refractive index writing, a phase change pattern on the IOL that is configured to compensate for the deviation(s) and/or tilt to improve the foveal vision of the subject.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315850
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method for vergence matching includes calculating vergence of a wave after refraction on a surface of an IOL and, based on an estimated curvature, converting an initial phase map into a vergence-matched phase map, such that the initial phase map follows the curved vergence of the wavefront.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315848
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes determining at least one modification to be made to an IOL implanted in a subject to improve the vision of the subject, wherein the IOL has a first index of refraction; and based on the determination, applying laser radiation to at least one selected area of the IOL to form, within the IOL, at least one additional layer having a different index of refraction than the first index of refraction and a particular shape within the IOL configured to improve the vision of the subject.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Patent number: 10758340
    Abstract: An intraocular lens (IOL), system, and method having a base lens and a complementary lens selected to form a curved image surface matching a retina surface when placed in an eye's line of sight.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 1, 2020
    Assignee: Johnson & Johnson Surgical Vision, Inc.
    Inventors: Kaccie Y. Li, Hendrik A. Weeber, Carmen Canovas Vidal, Patricia Ann Piers, Huawei Zhao, Robert Rosen
  • Publication number: 20200214829
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Publication number: 20200214831
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Patent number: 10695490
    Abstract: A semi-automated system (100) suitable for use in a hospital setting for filling patient-specific liquid medication prescriptions from bulk medicine containers (104) into oral/enteral syringes (S) for administration on a just-in-time basis. The system enables hospital pharmacists to simplify and streamline their task, increasing the number of prescriptions that can be filled in a day, improving patient safety and care by minimizing medication errors and the consequences that ensue.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: June 30, 2020
    Inventors: Nicholas J Perazzo, Robert A Rosen, John G Grosskopf, Jr., Mark Bennett, John M Chopper
  • Patent number: 10588738
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 17, 2020
    Assignee: AMO GRONINGEN B.V.
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Patent number: 10588739
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: March 17, 2020
    Assignee: AMO GRONINGEN B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Publication number: 20200054445
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Patent number: 10456242
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: October 29, 2019
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Patent number: 10384006
    Abstract: A semi-automated system (100) suitable for use in a hospital setting for filling patient-specific liquid medication prescriptions from bulk medicine containers (104) into oral/enteral syringes (S) for administration on a just-in-time basis. The system enables hospital pharmacists to simplify and streamline their task, increasing the number of prescriptions that can be filled in a day, improving patient safety and care by minimizing medication errors and the consequences that ensue.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: August 20, 2019
    Inventors: Nicholas J. Perazzo, Robert A. Rosen, John G. Grosskop, Jr., Mark Bennett, John M. Chopper
  • Publication number: 20190239803
    Abstract: A psychophysical method, system, and apparatuses to characterize visual symptoms. A method may include presenting one or more stimuli to a patient indicating one or more visual symptoms. The patient may produce one or more responses to the stimuli. A determination of a measure of visual symptoms of the patient may be made utilizing a Bayesian method based on the responses.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 8, 2019
    Inventors: Robert Rosen, Carmen Canovas Vidal
  • Publication number: 20190242781
    Abstract: A multi-wavelength wavefront system and method for measuring diffractive lenses. A system may include one or more light sources configured to emit a plurality of wavelengths of light for diffraction by a diffractive lens. A light sensor may be configured to receive the light that is diffracted by the diffractive intraocular lens. A processor may be configured to determine one or more of the plurality of wavelengths that have a peak diffraction efficiency for the diffractive intraocular lens based on the light received by the light sensor.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 8, 2019
    Inventors: Robert Rosen, Mihai State, Marrie van der Mooren, Mengchan Sun, Hendrik A. Weeber, Tjeerd Zuidema
  • Publication number: 20190242780
    Abstract: A wavefront based characterization of surfaces based on reflections. An intraocular lens surface measurement system includes a light source configured to emit light that is reflected off an optical surface of an intraocular lens. A wavefront sensor is configured to receive the light that is reflected off the optical surface of the intraocular lens. A processor is configured to determine one or more characteristics of the optical surface of the intraocular lens based on a wavefront of the reflected light that is received by the wavefront sensor.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 8, 2019
    Inventors: Robert Rosen, Mihai State
  • Patent number: 10336477
    Abstract: A semi-automated system (100) suitable for use in a hospital setting for filling patient-specific liquid medication prescriptions from balk medicine containers (104) into oral syringes (S) for administration on a just-in-time basis. The system enables hospital pharmacists to simplify and streamline their task, increasing the number of prescriptions mat can be filled in a day, improving patient safety and care by minimizing medication errors and the consequences that ensue. The present invention also includes a novel adapter cap for use in interfacing between bulk medicine containers (104) and syringes (S) having a Luer-lock fitting.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: July 2, 2019
    Inventors: Nicholas J. Perazzo, Robert A. Rosen, John G. Grosskopf, Jr., Mark Bennett, John M. Chopper
  • Patent number: 10327888
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing an enhanced toric lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: June 25, 2019
    Assignee: AMO GRONINGEN B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Publication number: 20190159891
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 30, 2019
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers